

Peter Clarke, Caroline Clissold, Cherri Moseley Editorial consultant Peter Clarke

Penguin Random House

Senior editor Peter Frances
Senior art editor Mabel Chan
Editors Shaila Brown, Salima Hirani, Sarah MacLeod, Steve Sefford, Rona Skene

Designers Tannishtha Chakraborty, Louise Dick, Alison Gardner, Mik Gates, Tessa Jordens, Shahid Mahmood, Peter Radcliffe, Mary Sandberg, Jacqui Swan, Steve Woosnam-Savage

Illustrator Acute Graphics
Managing editors Lisa Gillespie, Paula Regan Managing art editor Owen Peyton Jones

Senior producer, pre-production Nikoleta Parasaki
Senior producer Mary Slater
Jacket editor Claire Gell Jacket designers Mark Cavanagh, Dhirendra Singh Senior DTP designer Harish Aggarwal Managing jackets editor Saloni Singh Design development manager Sophia MTT

Publisher Andrew Macintyre Art director Karen Self
Design director Phil Ormerod Publishing director Jonathan Metcalf

First published in Great Britain in 2016 by Dorling Kindersley Limited 80 Strand, London, WC2R ORL

Copyright © 2016 Dorling Kindersley Limited A Penguin Random House Company 10987654321 001-192676-July/2016

All rights reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of the copyright owner.

A CIP catalogue record for this book is available from the British Library. ISBN: 978-0-2411-8598-8

Printed and bound in China
A WORLD OF IDEAS:
SEE ALL THERE IS TO KNOW

Contents

Foreword7
Numbers
T
Number symbols 10
Place value 12
Sequences and patterns 14
Sequences and shapes 16
Positive and negative numbers 18
Comparing numbers 20
Ordering numbers 22
Estimating 24
Rounding 26
Factors 28
Multiples. 30
Prime numbers 32
Prime factors 34
Square numbers 36
Square roots 38
Cube numbers 39
Fractions 40
Improper fractions and mixed numbers 42
Equivalent fractions 44
Simplifying fractions 46
Finding a fraction of an amount 47
Comparing fractions with the same denominators 48
Comparing unit fractions 49
Comparing non-unit fractions 50
Using the lowest common denominator 51
Adding fractions. 52
Subtracting fractions 53
Multiplying fractions. 54
Dividing fractions 56
Decimal numbers. 58
Comparing and ordering decimals 60
Rounding decimals 61
Adding decimals 62
Subtracting decimals 63
Percentages 64
Calculating percentages 66
Percentage changes 68
Ratio 70
Proportion 71
Scaling 72
Different ways to describe fractions 74
2 Calculating
Addition 78
Adding with a number line 80
Adding with a number grid 81
Addition facts 82
Partitioning for addition 83
Expanded column addition. 84
Column addition 86
Subtraction 88
Subtraction facts 90
Partitioning for subtraction 91
Subtracting with a number line 92
Shopkeeper's addition 93
Expanded column subtraction 94
Column subtraction 96
Multiplication 98
Multiplication as scaling 100
Factor pairs 101
Counting in multiples 102
Multiplication tables 104
The multiplication grid 106
Multiplication patterns and strategies 107
Multiplying by 10, 100, and 1000 108
Multiplying by multiples of 10 109
Partitioning for multiplication 110
The grid method 112
Expanded short multiplication 114
Short multiplication 116
Expanded long multiplication 118
Long multiplication 120
More long multiplication122
Multiplying decimals 124
The lattice method 126
Division 128
Dividing with multiples. 130
The division grid 131
Division tables 132
Dividing with factor pairs 134
Checking for divisibility. 135
Dividing by 10,100 , and 1000 136
Dividing by multiples of 10 137
Partitioning for division 138
Expanded short division. 140
Short division 142
Expanded long division 144
Long division 146
Converting remainders 148
Dividing with decimals 150
The order of operations 152
Arithmetic laws 154
Using a calculator 156
3 Measurement
Length. 160
Calculating with length 162
Perimeter 164
Using formulas to find perimeter 166
Area 168
Estimating area 169
Working out area with a formula 170
Areas of triangles. 172
Areas of parallelograms 173
Areas of complex shapes. 174
Comparing area and perimeter. 176
Capacity 178
Volume 179
The volumes of solids 180
Working out volume with a formula 181
Mass 182
Mass and weight 183
Calculating with mass 184
Temperature 186
Calculating with temperature 187
Imperial units 188
Imperial units of length, volume, and mass 190
Telling the time 192
Dates 194
Calculating with time 196
Money 198
Using money 199
Calculating with money 200
4 Geometry
What is a line? 204
Horizontal and vertical lines 205
Diagonal lines 206
Parallel lines 208
Perpendicular lines 210
2D shapes 212
Regular and irregular polygons 213
Triangles 214
Quadrilaterals 216
Naming polygons 218
Circles 220
3D shape 222
Types of 3D shape 224
Prisms 226
Nets 228
Angles 230
Degrees 231
Right angles 232
Types of angle 233
Angles on a straight line 234
Angles at a point 235
Opposite angles 236
Using a protractor 238
Angles inside triangles 240

Calculating anglesinside triangles242
Angles inside quadrilaterals 244
Calculating angles inside quadrilaterals 245
Angles inside polygons 246
Calculating the angles in a polygon 247
Coordinates 248
Plotting points using coordinates 249
Positive and negative coordinates 250
Using coordinates to draw a polygon 251
Position and direction 252
Compass directions 254
Reflective symmetry 256
Rotational symmetry 258
Reflection 260
Rotation 262
Translation 264
5 Statistics
Data handling 268
Tally marks 270
Frequency tables 271
Carroll diagrams 272
Venn diagrams 274
Averages 276
The mean 277
The median 278
The mode 279
The range 280
Using averages 281
Pictograms 282
Block graphs 284
Bar charts 285
Drawing bar charts 286
Line graphs 288
Drawing line graphs 290
Pie charts 292
Making pie charts 294
Probability 296
Calculating probability 298
6 Algebra
Equations 302
Solving equations 304
Formulas and sequences 306
Formulas 308
Glossary 310
Index 314
Answers 319
Acknowledgments 320

Foreword

Our lives wouldn't be the same without maths. In fact, everything would stop without it. Without numbers we couldn't count a thing, there would be no money, no system of measuring, no shops, no roads, no hospitals, no buildings, no ... well, more or less "nothing" as we know it.

For example, without maths we couldn't build houses, forecast tomorrow's weather, or fly a plane. We definitely couldn't send an astronaut into space! If we didn't understand numbers, we wouldn't have TV, the internet, or smartphones. In fact, without numbers, you wouldn't even be reading this book, because it was created on a computer that uses a special number code based on 0s and ls to store information and make thousands of calculations in a second.

Understanding maths also helps us to understand the world around us. Why do bees make their honeycombs out of hexagons? How can we describe the spiral shape formed by a seashell? Maths holds the answers to these questions and many more.

This book has been written to help you get better at maths, and to learn to love it. You can work through it with the help of an adult, but you can also use it on your own. The numbered steps will talk you through the examples. There are also problems for you to solve yourself. You'll meet some helpful robots, too. They'll give you handy tips and remind you of important mathematical ideas.

Maths is not a subject, it's a language, and it's a universal language. To be able to speak it gives you great power and confidence and a sense of wonder.

Numbers are symbols that we use to count and measure things. Although there are just ten number symbols, we can use them to write or count any amount you can think of. Numbers can be positive or negative, and they can be either whole numbers or parts of numbers, called fractions.

Number symbols

Since the earliest times, people have used numbers in their daily lives - to help them count, measure, tell the time, or to buy and sell things.

Number systems

A number system is a set of symbols, called numerals, that represent numbers. Different ancient peoples developed different ways of writing and using numbers.

1This chart shows the system we use, called the Hindu-Arabic system, compared with some other ancient number systems.

2Of all these number systems, only ours has a symbol for zero. We can also see that the Babylonian and Egyptian systems are similar.

Hindu-Arabic numerals. are used all over the world today

Numbers were invented to count amounts of things such as apples $\square \square$ $\square F B$ 2 Many people think the Ancient Egyptian symbols for 1 to 9 .represented fingers

ANCIENT ROMAN	I	II	III
ANCIENT EGYPTIAN	I	II	III
BABYLONIAN	Y	PT	T

Roman numerals

This chart shows the Roman number system, which puts different letters together to make up numbers.

Symbols after a larger symbol are added to it.

REAL WORLD MATHS

Zero the hero

Not all number systems have a symbol for zero (0) as we do. On its own, zero stands for "nothing", but when it's part of a bigger number, it's called the place holder. This means it "holds the place" when there is no other digit in that position of a number.

Zeros help us read the time correctly on a 24-hour clock

The Romans used letters as symbols for numbers.

VIII	IX
"it	\|
产	俤

Reading long numbers and dates

To turn a long Roman number or date into a Hindu-Arabic number, we break it into smaller parts then add up the parts.

1Let's work out the number CMLXXXII. First, we break it into four sections.

[^0]
${ }_{\widehat{C}} \mathrm{M}$ L XXX II

! "C" before " M " means "400 less than 1000"

$$
\begin{array}{rlrl}
\mathrm{CM} & =1000-100 & =900+ \\
\mathrm{L} & & 50 \\
\mathrm{XXX} & = & 3 \times 10 & =30 \\
\mathrm{II} & = & 2 \times 1 & =2 \\
\hline & & & 982
\end{array}
$$

TRY IT OUT

Name the date

Today, we sometimes see dates written in Roman numerals. Can you use what you've learned to work out these years?

1 What's this year?

MCMXCVIII

2. Now have a try at writing these years as Roman numerals:
16662015

Answers on page 319

Place value

In our number system, the amount a digit is worth depends on where it's placed in a number. This amount is called its place value.

What is place value?

Let's look at the numbers 1,10 , and 100 . They are made of the same digits, 1 and 0 , but the digits have different values in each number.

The 10 ones. are exchanged for one ten

The 1 on its own has
a place value of 1

Let's start with the number 1 .
We're going to represent it by making a ones column and putting a single dot in it.

Ones

-

The 1 is now in the tens column, so it has a place value of 10

2
We can put up to nine dots in the ones column. When we get to 10 , we exchange the 10 dots in the ones columns for one in the new tens column.

The amount a digit is worth in a number

\qquad U.... The zero holds the
ones' place to show
there are no ones.

3
We can show up to 99 using two columns. When we reach 100 , we exchange the 10 tens for one hundred.

Thousands	H	T	0
5	7	6	

Th	H	T	0
5	0	7	6

4Now let's put numbers in our columns instead of dots. We can see that 576 is made up of: 5 groups of 100 , or 5×100, which is 500 7 groups of 10 , or 7×10, which is 70 6 groups of 1 , or 6×1, which is 6 .

The 10 tens are exchanged for one hundred

How place value works

Let's look at the number 2576 and think some more about how place value works.

1When we put the digits into columns, we can see how many thousands, hundreds, tens, and ones the number is made of.

of its position

2000

 500 70

2576

2When we write this again with numbers, using zeros as place holders, we get four separate numbers.

3Now, if we add up the four numbers, we get 2576 , our original number. So, our place value system works!

Ten times bigger or smaller

Each column in the place-value system increases or decreases the value of a digit by 10 . This is really useful when we multiply When we divide by 10, or divide a number by 10,100 , and so on.

Let's look at what happens to 437 when we multiply or divide it by 10 .

2If we divide 437 by 10 , each digit moves one column to the right. The new number is 43.7. A dot, called a decimal point, separates ones from numbers 10 times smaller, called tenths.

3To multiply 437 by 10 , we move each digit one column to the left. The new number is 4370 , which is 437×10.

Decimal point

When we multiply by 10, digits move one place value to the left

Sequences and patterns

A sequence is a series of numbers, which we call terms, listed in a special order. A sequence always follows a set pattern, or rule, which means we can work out other terms in the sequence.

A sequence is a set of numbers, called terms, that follow a set pattern, called a rule.

-

1
Look at this row of houses.
The numbers on the doors are $1,3,5$, and 7 . Can we find a pattern in this series?

2We can see that each number is two more than the one before. So, the rule for this sequence is "add two to each term to find the next term."

3If we use this rule, we can work out that the next terms are 9 and 11 . So, our sequence is: $1,3,5,7,9,11, \ldots$ The dots show that the sequence carries on.

The rule for this sequence is

Simple sequences

There are lots of ways to make sequences. For example, they can be based on adding, subtracting, multiplying, or dividing.

The dots show that the sequence continues

1In this sequence, we add one to each term to get the next term.

2Each term is multiplied by 10 to get the next term in this sequence.

RULE: ADD 1

RULE: MULTIPLY BY TEN

3
Sometimes, a rule can have more than one part. In this sequence, we add one, then multiply by two, then go back to adding one, and so on.

RULE: ADD ONE, THEN MULTIPLY BY TWO

The fifth term in the sequence will be $7+2$

TRY IT OUT

Spot the sequence

Can you work out the next two terms in each of these sequences? You'll have to work out the rule for each sequence first - a number line might help you.
(1) $22,31,40,49,58, \ldots$
(2) $4,8,12,16,20$,
(3) $100,98,96,94$,
(4)
$90,75,60,45,30$,

[^1]
Sequences and shapes

Some number sequences can be used to create shapes by using the terms in the sequence to measure the parts of a shape, such as the lengths of its sides.

Triangular numbers

One sequence that can be shown as shapes is the triangular number sequence. If we take a whole number and add it to all the other whole numbers that are less than that number, we get this sequence: $1,3,6,10,15, \ldots$ Each of the numbers can be shown as a triangle.

Adding 3 makes a new triangle.
$1+2+3=6$

3

We can show the triangular sequence by using shapes

1
The sequence starts with 1 , shown as a single shape.

2When we add 2 , we can arrange the shapes in a triangle. $1+2=3$

Square numbers

If we multiply each of the numbers 1,2 , $3,4,5$ by themselves, we get this sequence: $1,4,9,16,25, \ldots$
We can show this number sequence as real squares.

$1 \times 1=1$

$2 \times 2=4$

$3 \times 3=9$

The fourth square

$4 \times 4=16$

$5 \times 5=25$

Pentagonal numbers

The sides of these five-sided shapes, called pentagons, are made up of equally spaced dots. If we start with one dot, and then count the dots in each pentagon, we see this sequence: $1,5,12,22,35, \ldots$ These numbers are called pentagonal numbers.

1 dot

5 dots

12 dots

Each pentagon shares one corner, called a vertex, with the other pentagons

Each pentagon has

35 dots

REAL WORLD MATHS

The Fibonacci sequence

One of the most interesting sequences in maths is the Fibonacci sequence, named after a 13th-century Italian mathematician. The first two terms of the sequence are 1.
Then we add the two previous terms together to get the next term.

Add the previous two terms to find the next term
starts at 1

We can use the number sequence to make a pattern of boxes like this

When we connect the boxes' opposite corners, we draw a spiral shape

Positive and negative numbers

Positive numbers are all the numbers that are greater than zero. Negative numbers are less than zero, and they always have a negative sign (-) in front of them.

Negative numbers have $a^{\prime}-$ ' before them. Positive numbers usually have no sign in front of them.
-

What are positive and negative numbers?

Move left to count down
from zero

$\begin{array}{cccccc}-6 & -5 & -4 & -3 & -2 & -7 \\ \text { NEGATIVE NUMBERS }\end{array}$

1If we put numbers on a line called a number line, like the line on this signpost, we see that negative numbers count back from zero, while positive numbers get larger from the zero point.
2. Negative numbers are numbers.
less than zero. In calculations, we put negative numbers in brackets, like this (-2), to make them easier to read.

Adding and subtracting positive and negative numbers

Here are some simple rules to remember when we add and subtract positive and negative numbers. We can show how they work on a simple version of our numbers signpost, called a number line.

Adding a positive number

When we add a positive number, we move to the right on the number line. $2+3=5$

Subtracting a negative number To subtract a negative number, we also move right on the number line. So, subtracting -3 from 2 is the same as $2+3$.
$2-(-3)=5$

To add a positive number, we move to the right

To subtract a negative number,

 we move to the right

REAL WORLD MATHS

Ups and downs

We sometimes use positive and negative numbers to describe the floors in a buillding. Floors below ground level often have negative numbers.

```
-2-10
```

TRY IT OUT

Positively puzzling

Use a number line to work out these calculations.
(1) $7-(-3)=$?
(3) $7+(-9)=$?
(2) $-4+(-1)=$?
(4) $-2-(-7)=$?

Answers on page 319

Move to the right to count up from zero \qquad
0 123
5
6
7
8
$9 \quad 10$
POSITIVE NUMBERS

3Zero (0) is not positive or negative. It's the separation point between the positive and negative numbers.

4We don't usually put any sign in front of positive numbers.
So, when you see a number without a sign, it's always positive.

Subtracting a positive number

Now let's try subtracting a positive number. To subtract 3 from 2, we move to the left to get the answer.
$2-3=-1$

Adding a negative number

When we add a negative number, it gives the same answer as subtracting a positive one. To add -3 to 2 , we move left

To add a negative number, move to the left on the number line
 on the number line.
$2+(-3)=-1$

Comparing numbers

We often need to know if a number is the same as, smaller than, or larger than another number. We call this comparing numbers.

We use comparison symbols to show the relationship between two numbers.

More, less, or the same?

When we compare amounts in everyday life, we use words like more, less, larger, smaller, or the same as. In maths, we say numbers or amounts are greater than, less than, or equal to each other.

The number of cakes in each row is the same

Equal

Look at this tray of cupcakes. There are five cakes in each row. So, the number in one row is equal to the number in the other.

2

Greater than

 Now there are five cakes in the top row and three in the bottom one. So, the number in the top row is greater than the number in the bottom one.3

Less than

This time, there are five cakes in the top row and six in the bottom row. So, the number in the top row is less than the number in the bottom.

There are fewer cakes

Using symbols to compare numbers

We use these signs, called comparison symbols, when we compare numbers or amounts.

The narrowest part of the symbol points to the smaller number

Equals

This symbol means
"is equal to".
For example, $90+40=130$ means " $90+40$ is equal to 130 ".

2
 Greater than
 This symbol means

 "is greater than". For example, $24>14$ means " 24 is greater than 14 ".
Less than

This symbol means "is less than".
For example, $11<32$ means " 11 is less than 32 ".

Significant digits

The significant digits of a number are the digits that influence the value of the number. When we compare numbers, significant digits are very useful.

1This number has four digits. The most significant digit is the one with the highest place value, and so on, down to the least significant digit.

2Let's compare 1404 and 1133 . The place value of the most significant digits is the same, so we compare the second most significant digits.

[^2]$$
1404 \rightarrow 2
$$

TRY IT OUT

Which symbol?

Complete each of these examples by adding one of the three symbols you've learned.

Here's a reminder of the three symbols you'll need:

Equals
\sum Is greater than
$<$ Is less than
(1) 5123 ? 10221
(2) -2 ? 3
(3) 71399? 71100
(4) $20-5$? $11+4$

Answers on page 319

Ordering numbers

Sometimes we need to compare a whole series of numbers so that we can put them in order. To do this, we use what we know about place values and significant figures.

1
Cybertown has held an election for mayor. We need to put the candidates in order of the votes they received.

2First, we put the candidates' votes into a table so we can compare the place value of their most significant digits.

Let's look at the most significant digits. Only Krog's total has a digit in the ten thousands column. So, his vote total is the highest and we can put it first in a new table.

	TTh	Th	H	T	0			TTh	Th	H	T	0
Krog	1	0	4	2	3		Krog	1	0	4	2	3
Moop		5	2	3	4		Moop		5	2	3	4
Jeek		5	1	2	1	VOTE	Jeek		5	1	2	1
						KROG!	Xoon			9	1	2
							Flug			4	4	4
											4	5

4When we compare second significant digits, we see Moop and Jeek have the same digit in the thousands. So, we compare third significant digits. Moop's digit is greater than Jeek's.

We carry on comparing digits in the place-value columns until we have put the whole list in order, from largest to smallest numbers. Krog is the new mayor!

Ascending and descending order

When we put things in order, sometimes we want to put the largest number first, and sometimes the smallest.

TRY IT OUT

All in order

Practise your ordering skills by putting this list of ages in ascending order. Why not make an ordered list based on your own friends and family? You could order them by age, height, or the day of the month of their birthday.

Answer on page 319

NAME	AGE
Jake (me!)	9
Mum	37
Trevor the gerbil	1
Dad	40
Grandpa	67
Buster the dog	7
Grandma	68
Uncle Dan	35
Anna (my sister)	13
Bella the cat	3

Estimating

Sometimes when we're measuring or calculating, we don't need to work out the exact answer - a sensible guess, called an estimate, is good enough.

Estimation is finding something that is close to the correct answer.

-

Approximately equal

Equal

We've already learned the symbol to use for things that are equal.

? Approximately equal

This is the symbol we use for things that are nearly the same. In maths, we say they are approximately equal.

Quick counting

In everyday life, we often don't need to count something exactly. It's enough to have a good idea of how many things there are or roughly how big something is.

Compare the baskets to estimate which one has the most strawberries in it

1These three baskets of strawberries all cost the same, but they contain different numbers of strawberries.

2We don't actually have to count to see that the third basket contains more strawberries than the other two. So, the third basket is the best bargain.

Estimating a total

Sometimes we estimate because it would take too long to count or calculate the exact answer.

1Let's look at this bed of tulips. We want to know roughly how many there are, without having to count them, one by one.

There are nine horizontal rows

2The tulips aren't in exact rows, but we can count 11 flowers in the front row. There are nine rows, so we can say there are about 11×9 flowers, which is 99 .

There are 11 flowers in the front row

The flower bed is
divided roughly into nine squares

3
 Another way to estimate the total

 is to divide the bed into rough squares. If we count the flowers in one square, we can estimate the number in the whole bed.

4There are 12 tulips in the bottom right square. So, the total number is approximately 12×9, which is 108 .

There are 12 flowers in \qquad the bottom right square answers of 99 and 108. In fact, there are 105 tulips, so both estimates were pretty close!

Checking a calculation

Sometimes, we work out what we expect an answer to be by simplifying, or rounding, the numbers.

We estimate that the answer will be approximately 7000

$2847+4102=? \quad 3000+4000=7000 \quad 2847+4102=6949$

7Let's add together 2847 and 4102. We make an estimate first so that if our answer is very different, we know that we might have made a mistake.

2The first number is slightly less than 3000 , and the second is slightly more than 4000. We can quickly add 3000 to 4000 , to get 7000 .

3When we do the actual calculation, the answer we get is very close to our estimate. So, we can be confident that our addition is correct.

Rounding

Rounding means changing a number to another number that is close to it in value, but is easier to work with or remember.

The rounding rule is that for digits less than 5 , we round down. For digits of 5 or more, we round up.

Rounding up and rounding down

Digits 5 or more are

Now let's look at
28. It's nearer to 30 than 20 , so we round it up to 30 .

We round numbers "up" or "down", depending on where they are on the number line.

2Look at 24 on this number line. It's closer to 20 than to 30 , so we round it down to 20 .
\qquad

Rounding to different place values
Rounding to different place values will give us
different results. Let's look at what happens to 7641
when we round it to different place values.

TRY IT OUT

Estimating height

This robot is 165 cm tall.

(1)
What is his height rounded to the nearest 10 cm ?

2
What is his height rounded to one significant digit? (See below.)

Answers on page 319

Rounding to significant digits We can also round numbers to one or more significant digits.

1Let's look at the number 6346. The most significant digit is the one with the highest place value. So, 6 is the most significant digit. The digit after it is less than 5 , so we round down to 6000 .

2
The second significant digit is in the hundreds. The next digit is less than 5 , so when we round to two significant digits, 6346 becomes 6300 .

3
The third significant digit is in the tens column. If we round our number to three significant digits, it becomes 6350 .

In a four-digit number, rounding to the most significant digit is the same as rounding to the nearest 1000

63.46

We round using \vdots this digit

This is the second significant digit

Factors

A factor is a whole number that can be divided or shared into another number. Every number has at least two factors, because it can be divided by itself and 1 .

What is a factor?

This chocolate bar is made up of 12 squares. We can use it to find the factors of 12 by working out how many ways we can share it into equal parts.

$$
12 \div 1=12
$$

1If we divide the 12 -square bar by one, it stays whole. So, 1 and 12 are both factors of 12 .

4When the bar's divided into four, we get four groups of three squares. We already know that 4 and 3 are factors of 12 .
 Dividing the bar into two gives two groups of six squares.
So, 2 and 6 are also factors of 12 .

5Dividing the bar by six gives six groups of two squares. We have already found that 6 and 2 are factors of 12 .
$12 \div 3=4$

3When we divide the bar into three, we get three groups of four. So, 3 and 4 are factors of 12 .

6Finally, we can divide the bar into 12 and get 12 groups of one square. We've now found all the factors of 12 .

Factor pairs

Factors always come in pairs. Two numbers that make a new number when multiplied together are called a factor pair.
$1 \times 12=12$ or $12 \times 1=12$
$2 \times 6=12$ or $6 \times 2=12$
$3 \times 4=12$ or $4 \times 3=12$
. Let's look again at the factors of 12 we found. Each pair can be written in two different ways.

[^3]
Finding all the factors

If you need to find all the factors of a number, here's a way to write down your findings to make sure you don't miss any out.

1
To find all the factors of 30 , first write 1 at the beginning of a line and 30 at the other end, because we know that every number has 1 and itself as factors.

2Next, we test whether 2 is a factor and find that $2 \times 15=30$. So, 2 and 15 are factors of 30 . We put 2 just after 1 and 15 at the other end, just before 30 .

Next, we check 3 and find that $3 \times 10=30$.
So, we can add 3 and 10 to our row of factors, the 3 after 2 and the 10 before 15 .

4When we check 4, we can't multiply it by another whole number to make 30 . So, 4 isn't a factor of 30 . It doesn't go on our line.

5
We check 5 and find that $5 \times 6=30$. So we add 5 after 3 , and 6 before 10 . We don't need to check 6 because it's already on our list. So, our row of factors of 30 is complete.

$$
1 \times 30=30
$$

1 30
$2 \times 15=30$
12
1530

$$
\begin{gathered}
3 \times 10=30 \\
123 \quad 10 \quad 15 \quad 30
\end{gathered}
$$

$4 \times ?=30$
123

$$
\begin{gathered}
5 \times 6=30 \\
123561015 \quad 30
\end{gathered}
$$

Common factors

When two or more numbers have the same factors, we call them common factors.

The highest common factor is 8 : Here are the factors of 24 and 32 . Both have factors of $1,2,4$, and 8 . These are their common factors, in yellow circles.

2The largest of the common factors is 8 . We call it the highest common factor, sometimes shortened to HCF.

FACTORS OF 24

FACTORS OF 32

Multiples

When two whole numbers are multiplied together, we call the result a multiple of the two numbers.

A multiple of a number is that number multiplied by any other whole number.

Finding multiples

The number 12 is a multiple of both 3 and 4

1We can use a number line like this to work out a number's multiples. And if you know your multiplication tables, you'll find working with multiples is even easier!

Above the line we have marked the first 16 multiples of 3 . To find the multiples, we multiply 3 by 1 , then 2 , then 3 , and so on: $3 \times 1=3,3 \times 2=6,3 \times 3=9$

Common multiples

We have found out that some numbers can be multiples of more than one number. We call these common multiples.

We call the smallest number in the overlapping section the lowest common multiple

\odotThis is a Venn diagram. It's another way of showing the information in the number line above. In the blue circle are multiples of 3 from 1 to 50 . The green circle shows all the multiples of 4 from 1 to 50 .

[^4]

TRY IT OUT

Multiple mayhem

Which numbers are multiples of 8 and which are multiples of 9 ? Can you find any common multiples of 8 and 9 ?

Answers on page 319

6432
 36 48 $\begin{array}{lllll}16 & 81 & 108 & 56 & 90\end{array}$ $\begin{array}{llll}72 & 144 & 27 & 18\end{array}$

3Multiples of 4 are marked below the number line. Look at the number 12. It appears on both lines. So it's a multiple of both 3 and 4 .

4
Multiples and factors work together - we multiply two factors together to get a multiple. So 3 and 4 are factors of 12, and 12 is a multiple of 3 and 4 .

Finding the lowest common multiple

Here's a way of finding the lowest common multiple of three numbers.

Let's find the lowest common multiple of 2,4 , and 6 . First, we draw a number line showing the first ten multiples of 2.

2
Now we draw a number line showing the multiples of 4 . We find that $4,8,12,16$, and 20 are common multiples of 2 and 4 .

3
When we draw a number line of the multiples of 6 , we see that the first common multiple of all three numbers is 12 . So 12 is the lowest common multiple of 2 , 4 , and 6.

Common multiples of 2 and 4 are shaded blue

Common multiples of 2,4 , and 6 are shaded yellow

Prime numbers

A prime number is a whole number greater than 1 that can't be divided by another whole number except for itself and 1 .

A prime number has only two factors - itself and 1.

Finding prime numbers

To find out whether or not a number is prime, we can try to divide it exactly by other whole numbers. Let's try this out on a few numbers.

1Is 2 a prime number?
We can divide 2 by 1 and also by itself.
But we can't divide 2 by any other number.
So, we know 2 is a prime number.

Is 4 a prime number?

We can divide 4 by 1 and by itself. Can we divide 4 exactly by any other number? Let's try dividing by $2: 4 \div 2=2$ We can divide 4 by 2 , so 4 is not a prime number.

3

Is 7 a prime number?

We can divide 7 by 1 and by itself. Now let's try dividing 7 by other numbers. We can't divide 7 exactly by 2,3 , or 4 . We can stop checking once we get over half of the number we're looking at - in this example, once we get to 4 . So, 7 is a prime number.

4

Is 9 a prime number?

We can divide 9 by 1 and by itself. We can't divide 9 exactly by 2 , but we can divide it by $3: 9 \div 3=3$
This means 9 is not a prime number.

$$
\begin{align*}
& 2 \div 1=2 \\
& 2 \div 2=1 \tag{YES}
\end{align*}
$$

2 is a prime number

$$
\begin{align*}
& 4 \div 1=2 \\
& 4 \div 4=1 \tag{NO}\\
& 4 \div 2=2
\end{align*}
$$

4 is not a prime number
$7 \div 1=7$
$7 \div 7=1$
YES
7 is a prime number
$9 \div 1=9$
$9 \div 9=1$
$9 \div 3=3$
NO
9 is not a
prime number

Prime numbers up to 100
This table shows all the prime numbers from 1 to 100 .

	21	22	23	24	25	26	27	28	29	30
because it doesn't have two different factors - 1 and itself	31	32	33	34	35	36	37	38	39	40
	41	42	43	44	45	46	47	48	49	50
prime. All other even numbers can be divided	51	52	53	54	55	56	57	58	59	60
	61	62	63	64	65	66	67	68	69	70
Prime numbers are shaded dark purple	71	72	73	74	75	76	77	78	79	80
	81	82	83	84	85	86	87	88	89	90
Non-primes pale purple	91	92	93	94	95	96	97	98	99	100

Prime or not prime?

There's a simple trick we can use to check whether a number is prime - just follow the steps on this chart:

PICK A WHOLE NUMBER FROM 2 TO 100

CAN YOU DIVIDE THIS NUMBER EXACTLY BY 2, 3,5, OR 7?

No
YES

IT'S A PRIME
IT'S NOT A PRIME

REAL WORLD MATHS
The largest prime
The ancient Greek
mathematician Euclid worked out that we can never know the largest possible prime number. The largest prime we currently know is more than 22 million digits long! It's written like this:

$$
2^{74207281}-7
$$

This means "multiply 2 by itself 74207281 times, then subtract $1^{\prime \prime}$

Prime factors

A factor of a whole number that is also a prime number is called a prime factor. One of the special things about prime numbers is that any whole number is either a prime number or can be found by multiplying two or more prime factors.

Finding prime factors

Prime numbers are like the building blocks of numbers, because every number that's not a prime can be broken down into prime factors. Let's find the prime factors of 30 .

Prime factors have a green circle round them

$$
30 \div(2)=15
$$

2 and 15 are factors of 30

$$
15 \div 2=?
$$

2 is not a factor of 15

We start by seeing if we can divide 30 by 2 , the smallest prime number. We can divide 30 exactly by 2 , and 2 is a prime number, so we can say 2 is one of 30 's prime factors.

$$
15 \div(3)=5
$$

3 and 5 are factors of 15

3We can divide 15 exactly by 3 and get 5 . Both 3 and 5 are prime numbers, so they must also be prime factors of 30 .

$$
30=(2) \times(3) \times 5
$$

2,3, and 5 are prime factors of 30
So, we can say that 30 is the product of multiplying together three prime factors - 2,3 , and 5.

REAL WORLD MATHS

Prime factors for internet security

When we send information over the internet, it's turned into code to keep it secure. These codes are based on prime factors of very large numbers, which fraudsters would find really difficult and time-consuming to find.

All whole numbers can be broken down into two or more prime factors.

Factor trees

An easy way to find the prime factors of a number is to draw a diagram called a factor tree.

Let's find the prime factors of 72 . We know from our multiplication tables that 8 and 9 are factors of 72 , so we can write the information like this.

72

Neither 8 or 9 are prime numbers, so we need to break them down some more. When we factor 8 , we get 2 and 4 . We put a circle round 2 , because it's a prime number.
2

3Now when we factor the 4, we get 2 and 2 . Both are prime numbers so we circle them, too.

72

9

(2)

Now let's go back to the 9. It can't be divided by 2 , but it can be divided by 3 , giving two factors of 3 . Both are prime numbers, so now we can write all the prime factors of 72 like this:
$72=2 \times 2 \times 2 \times 3 \times 3$

TRY IT OUT

Different tree, same answer

There are often lots of ways to make a factor tree. Here's another tree for 72 , starting by dividing it by 2 . Can you finish it? There's more than one way - as long as you get the same list of prime factors as in Step 4, you've done it correctly!

Answer on page 319

Square numbers

When we multiply a whole number by itself, the result is a square number. Square numbers have a special symbol, a small "2" after the number, like this: 3^{2}.

A square number is formed when we multiply a whole number by itself.

The square measures 2×2 small squares
$2 \times 2=4$ or $2^{2}=4$

1	2
3	4

We can show the squares of numbers as actual squares. So to show 2^{2}, we can make a square that's made up of four smaller squares. So, 4 is a square number.

$4 \times 4=16$ or $4^{2}=16$			
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16			

[^5]$3 \times 3=9$ or $3^{2}=9$

1	2	3
4	5	6
7	8	9

2To show 3^{2}, our new square is three squares wide and three squares deep - a total of nine squares. This means 9 is also a square number.

$$
5 \times 5=25 \text { or } 5^{2}=25
$$

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

This is 5^{2} shown as 5×5 squares. There are 25 squares, which is the same as 5 multiplied by 5 . So, the four square numbers after 1 are $4,9,16$, and 25.

Squares table

This table shows the squares of numbers up to 12×12. Let's see how it works by finding the square of 7 . First, find 7 on the top row.

The square numbers form a diagonal line within the grid

\times	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7^{7}	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	4.5	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	1	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

[^6][^7]Squares of odd Squares of even numbers are numbers are always odd
always even

Square roots

A square root is a number that you multiply by itself once to get a particular square number. The symbol we use for the square root is $\sqrt{ }$.

Square roots are the opposite, or inverse, of
square numbers. square numbers.

1Let's look at 36 . Its square root is 6 , the number that we multiply by itself, or square, to get 36 . We write it like this: $\sqrt{ } 36=6$

2
Squares and square roots are opposites - so if 25 is the square of 5 , then 5 is the square root of 25 . The word we use in maths for this is "inverse".

3We can use this squares table to find square roots. Let's look at the square number 64. To find its square root, follow its row and column back to the start. We find 8 at the start of 64 's row and column, so we know 8 is the square root of 64 .

TRY IT OUT

Find the roots

Use the table on this page to work out the answers to these questions.

1 10 is the square root of which number?
(2) 4 is the square root of which number?
(3) What is the square root of 81 ?

Answers on page 319

\times	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
$\stackrel{8}{\wedge}$	8	16	24	32	40	48	56	64	72	80	88	96
$9 \vdots$	9	18	27	36	45	54	63	-	81	90	99	108
$10 \vdots$	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96.	108	120	132	144

Cube numbers

A cube number is the result of multiplying a number by itself, and then by itself again.

How to cube a number

$$
\begin{array}{r}
2 \times 2 \times 2=? \\
2 \times 2=4 \\
4 \times 2=8
\end{array}
$$

Let's find the cube of 2 . First, we multiply
2×2 to get 4 . Then we multiply the answer, 4 , by 2 again to make 8 .

$$
2^{3}=8
$$

because

$2 \times 2 \times 2=8$

๑. So, now we know that the cube of 2 is 8 .

When we cube numbers, we use a special symbol - a small " 3 " after the number, like this: 2^{3}.

Cube number sequence

Each cube number can be shown by an actual cube, made from cubes of one unit.

We can show the cube number as a single cube, like this.

$1 \times 1 \times 1=1$

The cube is made up of eight small cubes

Now let's do the same with 2:
$2^{3}=8$. We can show 8 as a cube, too, with sides that are two single-unit cubes long.

$2 \times 2 \times 2=8$

3
 Next we cube 3:

 $3^{3}=27$. This cube's sides are three single-unit cubes long.

4
Next, we calculate that $4^{3}=64$. The new cube has sides that are four single-cube units long.

The cube is made up of 27 small cubes

$$
3 \times 3 \times 3=27
$$

Fractions

A fraction is a part of a whole. We write a fraction as one number over another number. The bottom number tells us how many parts the whole is divided into and the top number says how many parts we have.

What is a fraction?

Fractions are really useful when we need to divide things into equal parts. Let's use this cake to show what we mean when we say something has been divided into quarters.

The cake has been cut up to make four equal-sized slices, called quarters.

2Each slice of cake is a quarter of the whole cake. But what does that mean?

Unit fractions

A unit fraction has 1 as its numerator. It is one part of a whole that is divided into equal parts. Let's divide our cake into different unit fractions, up to one-tenth. Can you see that the larger the denominator, the smaller the slice?
A half means "one part out
of a possible two parts"

\qquad \cdots $\frac{1}{2}$
ONE-HALF

$\frac{1}{3}$
ONE-THIRD

2/5 of the cakes are pink,.. so $3 / 5$ of them are blue
A non-unit fraction has a numerator that is more than one. Fractions can describe parts of a whole, like the cake above, or parts of a group, as with these cakes.

$\frac{2}{5}$
TWO-FIFTHS ARE PINK

5/7 of the cakes are pink, so $2 / 7$ of them are blue

2
This time, there are seven cakes and five are pink. So, five-sevenths of the cakes are pink.

$\frac{5}{7}$
FIVE-SEVENTHS ARE PINK

The cupcake has been divided into thirds

3Non-unit fractions can be parts of a whole, too. This shows two-thirds of a cake that's been divided into three.

Improper fractions and mixed numbers

Fractions aren't always less than a whole. When we want to show that the number of parts is greater than a whole, we can write the result as an improper fraction or mixed number.

Improper fractions

In an improper fraction, the numerator is larger than the denominator. This tells us that the parts make up more than one whole.

There are five parts

Improper fractions and mixed numbers are two different ways of describing the same amount.

Look at these five pieces of pizza. We can see that each piece is half of a whole pizza, so we can say that we have five lots of half a pizza.

2We write this as the fraction $5 / 2$. This means that we have five parts, and each part is one half $(1 / 2)$ of a whole.

Mixed numbers
A mixed number is a whole number together with a proper fraction. It's another way of writing an improper fraction.
@08

If we put our pizza halves together, we can make two whole pizzas, with one half left over. So, we can also describe the amount of pizza as "two wholes and one half", or "two and a half".

2We write it like this: $21 / 2$. This mixed number is equal to the improper fraction $5 / 2$:

$$
2 \frac{1}{2}=\frac{5}{2}
$$

Changing an improper fraction to a mixed number

1What would the improper fraction $10 / 3$ be as a mixed number? The fraction tells us that we have 10 lots of one third $(1 / 3)$.

2
If we put the thirds together, we can make three wholes, with one third left over. We can write this as a mixed number: $31 / 3$.

$=3 \frac{1}{3}$

3To make an improper fraction a mixed number, divide the numerator by the denominator. Write down the whole number part of the answer. Then write a fraction in which the numerator is the remainder over the original denominator.

Numerator of the improper fraction

$$
\frac{10}{3}=10 \div 3=3 \frac{1}{3}
$$

Changing a mixed number to an improper fraction

1Let's change $13 / 8$ into an improper fraction. First, we divide the whole into eighths, because the denominator of the fraction in our mixed number is 8 .

2If we count the eighths in one whole, then add the three-eighths of our fraction, we have 11 eighths. We write this as the improper fraction $11 / 8$.

3To change a mixed number to an improper fraction, we multiply the whole number by the denominator, then add it to the original numerator to make the new numerator.

Denominator.
Whole number................... Numerator

$$
7 \frac{3}{8}=\frac{1 \times 8+3^{6}}{8}=\frac{11}{8}
$$

Equivalent fractions

The same fraction can be written in different ways - for example, half a pizza is exactly the same amount as two quarters. We call these equivalent fractions.

1Look at this table, called a fraction wall. It shows different ways to divide a whole into different unit fractions.

2Look at the second row, which shows halves, and compare it to the row of fourths, or quarters. We can see that $1 / 2$ takes up the same amount of the whole as $2 / 4$. fractions.

This line helps us to see the amount of the whole taken up by one half ($1 / 2$).

Two quarters takes up the same space as one half.

$$
\begin{array}{llll}
\frac{1}{3} & \ddots & \ddots & \frac{1}{3}
\end{array} \frac{1}{3}
$$

Follow the line down to see which other fractions are the same as one half

To make equivalent fractions, we multiply or divide the numerator and the denominator by the same number.

Calculating equivalent fractions

To change a fraction to an equivalent fraction, we multiply or divide the numerator and denominator by a whole number, making sure we use the same whole number both times!

Multiplying
We can make $1 / 3$ into the equivalent fraction 4/12 by multiplying the numerator and the denominator by 4. Look at the table opposite to check that the two fractions are equivalent.

Dividing
We can change $8 / 10$ into an equivalent fraction by dividing the numerator and the denominator by 2 to make $4 / 5$. Look at the table on the opposite page to check that $8 / 10$ and $4 / 5$ are equivalent.

Using a multiplication grid to find equivalent fractions

We usually use this grid to help us multiply numbers, as on page 106, but it's also a quick and easy way to find equivalent fractions!

1Look at the top two rows, beginning 1 and 2 . Imagine a dividing line between them, making the two rows into fractions, like this:
$\begin{array}{llllll}\frac{1}{2} & \frac{2}{4} & \frac{3}{6} & \frac{4}{8} & \frac{5}{10} & \ldots\end{array}$

2The first fraction we have is $1 / 2$. If we read right along the row, we find that all the other fractions, up to $12 / 24$, are equivalent to $1 / 2$.

3This works even for rows that aren't next to each other in the table. So, if we put rows 7 and 11 together, we get a row of fractions that are equivalent to $7 / 1$ ו:

\times	1	2	3	4	5	6	7	8	9	10	11	12
	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	2.27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	\checkmark	10	15	20	25	30	35	40	45	50	55	
6	6	12	18	24	30	36	42	48	54	60	66	
7	7	14	21	28	35	42	49	56	63	70	77	
	8	16	24	32	40	48	56	64	72	80	88	
9	9	18	27	36	45	54	63	72	81	90	99	
10	10	20	30	40	50	60	70	80	90	100	110	
11	11	22	33	44	55	66	77	88	99	110	121	
12	12	24	36	48	60	72	84	96	108	120	2	

Simplifying fractions

Simplifying a fraction means reducing the size of the numerator and denominator to make an equivalent fraction that's easier to work with.

Simplifying fractions using the highest common factor Instead of going through several stages to simplify a fraction, we can do it by dividing both the numerator and the denominator by their highest common factor (HCF). Remember, we looked at common factors on page 29.

Let's simplify the fraction $15 / 21$. Using the method we learned on page 29, we first list all the factors of the numerator, 15 . They are $1,3,5$, and 15 .

2
Now we find the factors of the denominator, 21 . They are 1, 3, 7, and 21. The common factors of the numerator and the denominator are 1 and 3 , with 3 being the highest common factor.

[^8]| | | 15 | | |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 5 | 15 | |

...The highest common factor is 3

	\vdots			
	\vdots	21		
1	3		7	21

Finding a fraction of an amount

Sometimes, we need to find out exactly what a fraction of a number or an amount is. Here's how to do it.

To find a fraction of an amount, divide the amount by the denominator, then multiply the answer by the numerator.

Look at this herd of 12 cows. How many cows would two-thirds of the herd be?

$$
\frac{2}{3} \text { of } 12=\text { ? }
$$

3

 by dividing it by 3 , the denominator of the fraction. The answer is $12 \div 3=4$, so one-third of the herd is four cows.

3We know that one-third of 12 is 4 , so to find two-thirds, we multiply 4 by 2 . The answer is $4 \times 2=8$, so we know that two-thirds of 12 is 8 .

Comparing fractions with the same denominators

When we need to compare and order fractions, the first thing we do is look at the denominators. If the denominators are the same, all we need to do is put the numerators in order.

τ
 Look at these fractions. How can we put them in order, from smallest to largest?

2
All the fractions have the same denominator, 8. Remember, the denominator is the number at the bottom of a fraction that tells us how many equal parts a whole has been divided into.

3Because these denominators are all the same, all we need to do to compare the fractions is look at the numerators.

4The numerator tells us how many parts of the whole we have. A bigger numerator means more parts. So, let's put the fractions in ascending order (from smallest to largest).

5If we show these fractions as peas in a pod, it's easy to see which ones are smallest and largest.

When the denominators are the same, we can say that the larger the numerator, the greater the fraction.

Smallest

Comparing unit fractions

Unit fractions are fractions where the numerator is 1.
To compare unit fractions, we compare their different denominators and put them in order.
Take a look at these jumbled fractions.
Let's try to put them in ascending order.
These fractions all have the same
numerator, l. Each of these fractions
is just one part of a whole.

3
We can compare them by looking at the denominators. A bigger denominator means the whole is split into more equal parts.

4
The more parts we split the whole into, the smaller the parts will be. So, the larger the denominator, the smaller the fraction. Let's use the denominators to put the fractions in order, from smallest to largest.

If we show these fractions as parts of a whole carrot, we can see how each portion gets smaller when the denominator is greater.

When the numerators are the same, we can say that the smaller the denominator, the greater the fraction.

$\frac{1}{7}$

$\frac{1}{5}$

$\frac{1}{3}$

$\frac{1}{2}$

Comparing non-unit fractions

To compare non-unit fractions, we often have to rewrite them so they have the same denominator. Remember, a non-unit fraction has a numerator greater than 1.

7Which of these fractions is larger? If we change them into fractions with the same $\frac{2}{3} ? \frac{3}{5}$ denominators, we can compare the numerators.

2
One way to give the fractions the same denominator is to multiply each fraction by the other's denominator. First, let's multiply the numerator and denominator of $2 / 3$ by 5 , because 5 is the denominator of $3 / 5$.

> 3
> Next, we change $3 / 5$ into an equivalent
> fraction with a denominator of 15 by multiplying the numerator and denominator by 3 , because 3 is the denominator of $2 / 3$.

Now we have two fractions we can easily compare. We know that if $10 / 1$ is larger than $9 / 15$, then the same is true about their equivalent fractions. So, we can say that $2 / 3>3 / 5$.

Using a number line to compare fractions You can also use a number line to compare fractions, just as with whole numbers. This number line shows fractions from $0-1$, split into quarters at the top and fifths at the bottom.

1Let's compare $3 / 4$ and $4 / 5$. It's easy to see by looking along the line that $4 / 5$ is larger than $3 / 4$.

Multiply by 5, the denominator of $3 / 5$.

Multiply by 3, the denominator

This symbol means "greater than"
$\frac{10}{15}>\frac{9}{15} \quad$ so $\quad \frac{2}{3}>\frac{3}{5}$

Using the lowest common denominator

When we need to rewrite fractions to give them the same denominator, the simplest way is to use something called the lowest common denominator.
1
Let's compare the fractions $3 / 4$ and $7 / 10$. To do this, we'll change them so they have the same denominator.

2
Let's look for the lowest common multiple of the two denominators - we learned about common multiples on page 31. We can use number lines to find that 20 is the lowest common multiple of 4 and 10 . Now let's rewrite

MULTIPLES OF 4 the fractions with 20 as their denominator.
$0 \ldots \quad 10 \ldots \ldots \ldots \ldots$
MULTIPLES OF 10

3To do this, we work out how many times each fraction's original denominator goes into 20 , and multiply both the numerator and denominator by that number.

The denominator of $3 / 4$ goes into 20 five times so we multiply both numbers by 5 .

.7
The denominator goes into 20 two times \qquad so we multiply both numbers by 2

4Now that both denominators are the same, it's easy to compare the numerators. We see that $15 / 20$ is greater than $14 / 20$, so $3 / 4$ is greater than $7 / 10$.

TRY IT OUT

Who's best in the test?

In a maths test, $4 / 5$ of Zeek's answers were correct. Wook got $5 / \%$ of them correct. Can you work out who got most answers right? Here's a handy hint - start by finding the lowest common denominator!

Answer on page 319

$$
\frac{15}{20}>\frac{14}{20} \quad \text { so }
$$

Adding fractions

We add fractions together by adding their numerators, but first we have to make sure they have the same denominator.

To add fractions, we add the numerators and write the total over the common denominator.

Adding fractions that have the same denominator

To add fractions that already have the same denominator, we just add the numerators. So, if we add $2 / 5$ to $1 / 5$, we get $3 / 5$.

Adding two-fifths to one-fifth
makes three-fifths

Adding fractions that have different denominators

1Let's try the calculation $21 / 4+1 / 6$. First, we have to change the mixed number $2 \frac{1}{4}+\frac{1}{6}=?$ into an improper fraction.

2We change $21 / 4$ to an improper fraction by multiplying 2 , the whole number, by 4, the fraction's denominator. Then we add 1 , its numerator, to make $9 / 4$. Now we can write our calculation $9 / 4+1 / 6$.

$$
2 \frac{1}{4}=\frac{2 \times 4+1}{4}=\frac{9}{4}
$$ Both numerator and denominator

are multiplied by the same number

4 goes into 12 three times, so we multiply by 3

6 goes into 12 twice, so we multiply by 2 ...

3
Next, we give our two fractions the same denominators. Their lowest common denominator is 12 , so we make the fractions into twelfths, as we learned on page 51.

Now we add the
numerators of the fractions to make $29 / 12$. Lastly, we change our answer to a mixed number.

$$
\frac{27}{12}+\frac{2}{12}=\frac{29}{12} \quad \text { so } \quad 2 \frac{1}{4}+\frac{1}{6}=2 \frac{5}{12}
$$

The improper fraction 29/12 is changed to a mixed number

Subtracting fractions

To subtract fractions, first we check they have the same denominators.
Then we just subtract one numerator from the other.

Subtracting fractions that have the same denominator

To subtract fractions with the same denominator, we simply subtract the numerators. So, if we subtract $1 / 4$ from $3 / 4$, we get $2 / 4$, or $1 / 2$.

Two of the original threequarters are left
$\frac{3}{4}$

Subtracting fractions that have different denominators

1Let's try the calculation $31 / 2-2 / 5$. As with adding fractions, first we need to change the mixed number and make the fractions' denominators the same.

2We change $31 / 2$ to an improper fraction by multiplying the whole number by 2 , the fraction's denominator, then adding 1 , its numerator, to make $7 / 2$.

$$
3 \frac{1}{2}=\frac{3 \times 2+1}{2}=\frac{7}{2}
$$

[^9]
Multiplying fractions

Let's look at how to multiply a fraction by a whole number or by another fraction.

Multiplying by whole numbers and by fractions
What happens when we multiply by a fraction? Let's multiply 4 by a whole number, and by a proper fraction. Remember, a proper fraction is less than 1.

The answer is larger than the original number

$$
4 \times 2=8
$$

Multiplying by a whole number
When we multiply 4 by 2 , we get 8 .
This is what we'd expect - that multiplying a number makes it bigger.

The answer is smaller than the original number

$$
4 \times \frac{1}{2}=2
$$

2
Multiplying by a fraction Multiplying 4 by $1 / 2$ makes 2 . When we multiply by a proper fraction, the answer is always smaller than the original number.

Multiplying a fraction by a whole number Let's look at some different calculations to work out what happens when we multiply fractions.

1
Let's try the calculation $1 / 2 \times 3$. This is the same as three groups of one half, so we can add three halves together on a number line to make $11 / 2$.

2Now let's work out $3 / 4 \times 3$ on a number line. If we add all the quarters in three groups of three-quarters, we get $21 / 4$.

3To work out the same calculations without a number line, we simply multiply the whole number by the fraction's numerator, like this.

Three groups of one

Three groups of

$$
\begin{aligned}
& \frac{1}{2} \times 3=\frac{1 \times 3}{2}=\frac{3}{2} \text { or } 2 \frac{1}{2} \\
& \frac{3}{4} \times 3=\frac{3 \times 3}{4}=\frac{9}{4} \text { or } 2 \frac{1}{4}
\end{aligned}
$$

Multiplying fractions with a fraction wall

When we multiply two fractions together, it can be useful to say that the " x " symbol means "of". Let's find out how this works with the help of a fraction wall.

This section is one half of the original quarter

1 whole			
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

For the calculation $1 / 2 \times 1 / 4$, let's say this means "one half of one quarter". First, let's divide a whole into four quarters and shade in one quarter.

$$
\frac{1}{2} \times \frac{1}{4}=\text { ? }
$$

2Now to find one half of the quarter, we draw a line through the middle of the four quarters. By dividing each quarter in half, we now have eight equal parts.

1 whole			
1 $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$			

Let's shade in the top half of our original quarter. This part is one half of a quarter, and also one-eighth of the whole. So we can say that $1 / 2 \times 1 / 4=1 / 8$.

The calculation $1 / 2 \times 1 / 4$ is the same as saying "a half of a quarter".
$\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$

How to multiply fractions Let's look at another way we can multiply fractions, without drawing a fraction wall.

1Look at this calculation. Can you see that the numerators and the denominators have been multiplied together to make the answer? fractions. The method is exactly the same - just multiply the numerators and the denominators to find the answer.

To multiply fractions we multiply the numerators to make a new numerator. Then we multiply the denominators to make a new denominator.

$$
\frac{1}{2} \times \frac{1}{6}=?
$$

Multiply the numerators together

> Multiply the numerators together

$$
\frac{2}{5} \times \frac{2}{3}=? \frac{2}{5} \times \frac{2}{3}=\frac{2 \times 2}{5 \times 3}=\frac{4}{15}
$$

Dividing fractions

Dividing a whole number by a proper fraction makes it larger. We can divide fractions using a fraction wall, but there's also a written way to do it.

Dividing by whole numbers and by fractions

What happens when we divide a whole number by a proper fraction, compared to dividing it by another whole number? Remember, a proper fraction is a fraction that's less than 1.

Dividing by a fraction gives a number
that's larger than the original one

$$
8 \div 2=4
$$

Dividing by a whole number
When we divide 8 by 2 , the answer is 4 . This is what we'd expect - that dividing a number makes it smaller.

$$
8 \div \frac{1}{2}=16
$$

Dividing by a proper fraction When we divide 8 by $1 / 2$, we are finding how many halves there are in 8 . The answer is 16 , which is larger than 8.

Dividing a fraction by a whole number
Why does dividing a fraction by a whole number give a smaller fraction? We can use a fraction wall to find out.

$$
\frac{1}{2} \div 2=?
$$

$$
\frac{1}{4} \div 3=?
$$

1 whole

When a half is divided into two equal . parts, each part is a quarter of the whole

1We can think of $1 / 2 \div 2$ as "one half shared between two". The fraction wall shows that if we share a half into two equal parts, each new part is one-quarter of the whole.

$$
\frac{1}{2} \div 2=\frac{1}{4}
$$

1 whole

$\frac{1}{4}$		$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$			
$\frac{1}{12}$											

One-quarter can be divided into three, to make three-twelfths

2Now let's try $1 / 4 \div 3$. On the fraction wall, we can see that when one-quarter is divided into three equal parts, each new part is one-twelfth of the whole.

$$
\frac{1}{4} \div 3=\frac{1}{12}
$$

How to divide a fraction by a whole number

There's a simple way to divide a fraction by a whole number - by turning things upside down!

1
Look at these calculations. Can you see a pattern? We can make the denominators of the answers by multiplying the whole numbers and the denominators together. We can use this pattern to divide by fractions without using a fraction wall.

2
Let's work out $1 / 2 \div 3$. First, we have to make the whole number into a fraction.

3
To write the number 3 as a fraction, we make 3 the numerator over a denominator of l , like this.

Next, we turn our new fraction upside down and change the division sign into a multiplication sign. So our calculation is now $1 / 2 \times 1 / 3$.

5Now we just have to multiply the two numerators, then the two denominators, to get the answer, $1 / 6$.

The denominator becomes the numerator.

$$
\frac{1}{2} \div 3=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
$$

TRY IT OUT

Division revision

Now it's your turn! Try out your fraction division skills with these tricky teasers.
(1) $1 / 6 \div 2=? \quad 21 / 2 \div 5=$?
(3) $1 / 7 \div 3=$? (4) $2 / 3 \div 4=$?

Answers on page 319

$$
\begin{aligned}
& \text { wn! } \begin{array}{l}
\text { If we multiply the } \\
\text { original denominator } \\
\text { by the whole number, } \\
\text { we get the new } \\
\text { denominator }
\end{array} \\
& \frac{1}{2} \div 8=\frac{1}{16} \div 2=\frac{1}{6} \quad \begin{array}{l}
\text { If we multiply } 4 \text { and } 3
\end{array} \\
& \frac{1}{4} \div 3=\frac{1}{12} \quad \text { together, we get } 12
\end{aligned}
$$

Decimal numbers

Decimal numbers are made up of whole numbers and fractions of numbers. A dot, called a decimal point, separates the two parts of a decimal number.

1
Decimals are really useful when we want to make accurate measurements, such as recording the runners' times in this race.

2On the scoreboard, the digits to the left of the decimal point show whole seconds. The digits to the right show parts, or fractions, of a second.

Decimals are fractions, too!
The digits after the point in a decimal number are just another way of showing fractions, or numbers less than one. Let's find out how they work.

1
Tenths
If we put $27 / 10$ into place-value columns, the whole number 2 goes in the ones column and the 7 in the tenths column to stand for $7 / 10$. So we can also write $27 / 10$ as 2.7 .

2Hundredths
Now let's do the same with 272/100. When we put all the digits into their place-value columns, we can see that $272 / 100$ is the same as 2.72 .

Thousandths

Finally, when we put $2721 / 1000$ into place-value columns, we see that $2721 / 1000$ is the same as 2.721 .

$$
2 \frac{7}{10}=\quad \begin{array}{ll}
0 & \begin{array}{l}
\frac{1}{10} \\
2
\end{array} \quad \begin{array}{l}
\text { The } 7 \text { in the } \\
\text { tenths column }
\end{array} \\
7_{\text {F............... stands for } 710}
\end{array}
$$

This 2
stands
for 2/100

$$
2 \frac{72}{100}=2 \cdot 7 \quad 2^{<\cdots}
$$

This 1 stands for $1 / 1000$

Whole numbers go to the left of the decimal point

The decimal point separates whole numbers from fractions

Fractions go to the right of the decimal point

${ }_{\text {is }} 44.91_{\text {sec }}$

зво 45.24 sec

Fraction converter

Here is a table of some of the most common fractions and their equivalent decimal fractions.

Fraction	Decimal
$\frac{1}{1000}$	0.001
$\frac{1}{100}$	0.01
$\frac{1}{10}$	0.1
$\frac{1}{5}$	0.2
$\frac{1}{4}$	0.25
$\frac{1}{3}$	0.33
$\frac{1}{2}$	0.5
$\frac{3}{4}$	0.75

Decimal
0.001
0.01
0.1
0.2
0.25
0.33
0.5
0.75

Rewriting fractions as decimals

To rewrite a fraction as a decimal, we first turn it into an equivalent fraction in tenths, hundredths, or thousandths. We do this by finding a number we can multiply by the fraction's denominator to make it 10, 100, or 1000.

The numerator is multiplied by 5

The 5 in the tenths column means "fivetenths"

$1 / 2$ is the same as 0.5

We can change $1 / 2$ into $5 / 10$ by multiplying the numerator and denominator by 5. When we put $5 / 10$ into place-value columns, we get the decimal fraction 0.5 .

$$
\frac{1}{2}=\frac{5}{10}=\underbrace{\times 5}_{\times 5}
$$

[^10]

25/100 is the ..same as 0.25

Comparing and ordering decimals

When we compare or order decimals, we use what we know about place value, just as we do when we compare whole numbers.

When we compare decimals, we look at the digits with the highest place values first.

Comparing

 decimalsWhen we compare decimals, we compare the digits with the highest place value first to decide which number is larger.

1
0.1 is greater than 0.01

The digits in the ones column are the same, so we compare the digits in the tenths column to find that 0.1 is the greater number.

2
2.65 is greater than 2.61

This time we have to compare the hundredths columns to find that the greater number of the two is 2.65 .

Ordering decimals

On page 22, we found out how to put whole numbers in order. Ordering decimals works in just the same way!

We compare the digits in order, starting with the most significant

	T	0	$\frac{1}{10}$	$\frac{1}{100}$
Athens	2*	9	3	-
Cairo	2	9	1	3
New York	2	5	0	1
Sydney	1	5	6	7
Capetown	1	4	6	1

1Let's help sun-loving Kloog choose a holiday hotspot by putting his list of cities in order, with the highest temperature first. As with whole numbers, we order decimal numbers by comparing their significant digits.

2To find the greatest number, we compare each number's most significant digit. If they are the same, we look at the second digits, and then, if necessary, the third, and so on. We carry on comparing until we have ordered the numbers.

Rounding decimals

We round decimals in the same way as we round whole numbers (see pages 26-27). The easiest way to see how it works is by looking at a number line.

Adding decimals

We add decimals in the same way as we add whole numbers turn to page 87 to find out the written way to add decimals.

> Let's add 4.5 and 7.7. To help us see how adding decimals works, we'll show the calculation using counting cubes.

Each light blue block is one tenth

=? or
$4.5+7.7=?$

A dark blue strip is one, made up of ten tenths

5
We have found that $4.5+7.7=12.2$.
When we write the calculation, it looks like this - go to page 87 for more about adding decimals in this way.

$$
+\begin{array}{r|ccc}
\top & 0 & \frac{1}{10} \\
& 4 & \cdot & 5 \\
& 7 & \cdot & 7 \\
\hline 1 & 2 & \cdot & 2 \\
\hline
\end{array}
$$

$$
4.5+7.7=12.2
$$

Subtracting decimals

When we subtract decimal numbers, we use the same method as we do for whole numbers.

1
Let's try the calculation 8.2 - 4.7. We'll use the counting cubes to help us see what happens.

2
First, let's subtract 0.7, the decimal part of 4.7, from 8.2. We exchange a ones strip for ten tenth cubes so we can take away seven tenths. The answer is 7.5.

3Now let's subtract 4, the whole number, from 7.5. When we remove four of the ones strips, we have 3.5 left.

4So $8.2-4.7=3.5$. We can write the calculation in columns, like this. Find out more about column subtraction on pages 96-97.

Eight ones and two tenths make 8.2

We are taking away four ones and seven tenths from our original number, 8.2

$$
8.2-4.7=?
$$ One of the ones block is exchanged for ten tenths - =

0.7
7.5

After we remove seven tenths, we have seven ones and five tenths left

$$
\text { or } 7.5-4=3.5
$$

4
3.5
. Now we take away four ones from our
.There are three ones and five tenths left
number, 7.5
SO

$$
8.2-4.7=3.5
$$

TRY IT OUT

Over to you!

Find out how much you've learned by trying out these calculations.

$$
\begin{array}{r}
7^{0} \\
8 \cdot 2 \\
-\quad 1^{\frac{1}{10}} \\
-\quad 4 \cdot 7 \\
\hline 3 \cdot 5 \\
\hline
\end{array}
$$

Answers on page 319
(1) $0.2+3.9=$? (2) $45.6-21.2=$?
(3) $10.2+21.6=?$
(4) $96.7-75.8=?$

Percentages

Per cent means "per hundred". It shows an amount as part of 100. So, 25 per cent means 25 out of 100. We use the symbol "\%" to represent a percentage.

A percentage is a special type of fraction.

Parts of 100

A percentage is a useful way of comparing quantities. For example, in this block of 100 robots, the robots are divided into different colour groups according to the percentage they represent.

71\%
There is only one green robot out of a total of 100 . We can write this as 1%. This is the same as $1 / 100$ or 0.01 .

2

10\%

In the yellow group, there are 10 robots out of 100 . We can write this as 10%. This is the same as $1 / 10$ or 0.1.

3

50\%

There are 50 robots out of 100 in the red group. We can write this as 50%. This is the same as $1 / 2$ or 0.5 .

100\%

All the robots added together - green, grey, yellow, and red - represent 100%. This is the same as 100/100 or 1 .

TRY IT OUT

Shaded parts

These grids have 100 squares.
What percentage is shaded dark purple in each grid?

Answers on page 319

Calculating percentages

We can find a percentage of any total amount, not just 100.
The total can be a number or a quantity, such as the area of a shape. Sometimes we might also want to write one number as a percentage of another number.

Finding a percentage
 of a shape

On pages 64-65, we looked at percentages using a square grid divided into 100 parts. But what if a shape has 10 parts or even 20 ?Take a look at this example.
There are 10 tiles altogether. What percentage of the tiles have a pattern?

2
The whole amount of any shape is 100%. To find the percentage represented by one part, we divide 100 by the number of parts (10). This gives us 10 , so one tile equals 10%.

3
We multiply the result (10) by the number of patterned tiles (6). This gives us the answer 60. So, 60% of the tiles have a pattern.

There are 10
equal parts

$$
\begin{aligned}
100 \div 10=10^{\text {L............ Each tile is }} \text { worth } 10 \%
\end{aligned}
$$

```
\[
10 \times 6=60
\]
```

今... 60\% have a pattern

TRY IT OUT

Working it out

Here are several shapes. What percentage of each shape has been shaded a dark colour?

1

2

3

Finding a percentage of a number

We can also use percentages to divide a number into parts. There's more than one way to do this, but one method is to start by finding 1%.

Let's find 30% of 300

9
First, we need to find 1% of 300 , so we divide the 300 by 100.

Next, we multiply the answer by the percentage we need to find.

4
This gives us the answer:
30% of 300 is 90 .

$$
30 \% \text { of } 300=\text { ? }
$$

$$
300 \div 100=3
$$

F.

$$
3 \times 30=90
$$

30% of $300=90$

The 10\% method

In the example above, we began by finding 1% of the total. Sometimes, we can get to the answer more quickly by first finding 10%. This is called the 10% method.

In this example, we need
to work out 65% of $£ 350$.

We need to find 10% of $£ 350$,
so we divide the amount by 10. This gives us 35 .

We know that 10% is 35 , so 60% will be 6 groups of 35 .
$6 \times 35=210$
$6 \times 35=210$

TRY IT OUT

10% challenge

Time yourself and see how quickly you can work out the following percentages:
(1) 10% of 200
(2) 10% of 550
(3) 10% of 800

Answers on page 319

4We've found 60% of 350 . Now we just need another 5% to get 65%. To work out 5%, we simply halve the 10% amount.
$350 \div 10=35$
65% of $£ 350=$?

$$
350 \div 10=35
$$

$35 \div 2=17.50$

Now add 60% and 5% to find 65%. So, 65% of $£ 350$ is $£ 227.50$.

$$
210+17.50=£ 227.50
$$

Percentage changes

We can use a percentage to describe the size of a change in a number or a measurement. We might also want to work out how much an actual value has increased or decreased when we already know how much it has changed as a percentage.

Calculating a percentage increase

This snack bar used to weigh 60 g but it's now 12 g heavier. What is the percentage increase in the bar's weight?

$12 \mathrm{~g}=$? \% of 60 g

2First, we divide the increase in weight by the original weight. This is $12 \div 60$. The answer is 0.2 .

The amount of the change

Then we multiply the result by 100 . So, we need to work out 0.2×100. The answer is 20 .

$$
0.2 \times 100=20
$$

4This means the new bar weighs 20% more than it did before.

$$
12 \mathrm{~g}=20 \% \text { of } 60 \mathrm{~g}
$$

Calculating a percentage decrease

. Here's another snack bar. It used to contain 8 g of sugar. To make it healthier, it's now made with 2 g less sugar. Let's work out how much the amount of sugar has decreased as a percentage.

$$
2 \mathrm{~g}=\text { ? } \% \text { of } 8 \mathrm{~g}
$$

? The first step is to divide the decrease in the amount of sugar by the original amount. This is $2 \div 8$. The answer is 0.25 .

Divide the size of the change by the original amount

$$
2 \div 8=0.25
$$

2 To turn this result into a percentage, we just multiply 0.25 by 100, giving us the answer 25 .

$$
0.25 \times 100=25
$$

4This means the bar now has 25% less sugar.

$$
2 g=25 \% \text { of } 8 g
$$

Turning a percentage increase into an amount

TOne year ago, this bike cost $£ 200$. Since then, its price has gone up by 5%. How much more does it cost now?

$$
5 \% \text { of } £ 200=?
$$

2
First, we need to find 1% of 200 . All we need to do is divide 200 by 100 . Remember, we looked at dividing by 100 on page 136 . The answer is 2 .

The original $200 \div 100=2$ price. .

We want to find 5%, so we multiply the value of 1% by 5 . This is 2×5, and the answer is 10 .
1% of the $-2 \times 5=10$ original price This means the bike now costs $£ 10$ more than it did a year ago.

5% of $£ 200=£ 10$

Turning a percentage decrease into an amount

Now take a look at this bike. It used to cost $£ 250$, but its price has been cut by 30%. If we buy the bike now, how much money will we save?

$$
30 \% \text { of } £ 250=?
$$

? Just as in our example with the other bike, the first step is to work out 1% of the original price. This is $250 \div 100$. The answer is 2.5 .

$$
250 \div 100=2.5 \quad \begin{aligned}
& 1 \% \text { of } \\
& 250
\end{aligned}
$$

3 Now we know what 1% is, we can find 30% like this: $2.5 \times 30=75$

$$
2.5 \times 30=75
$$

This means the price of the bike has dropped by $£ 75$.

$$
30 \% \text { of } £ 250=£ 75
$$

TRY IT OUT

Percentage values

In a sale, these items have been reduced in price. Can you work out the new prices? To work out the new price, calculate the decrease in price and subtract it from the original price.

Answers on page 319

A coat priced $£ 200$ has been reduced by 50\%.

[^11]
3
This T-shirt has been reduced by 10%. It was $£ 15$.

Ratio

Ratio is the word we use when we compare two numbers or amounts, to show how much bigger or smaller one is than the other.

Three strawberry cones to chocolate cones is 3 to 4 .

2
The symbol for the ratio between two amounts is two dots on top of each other, so we write the ratio of strawberry to chocolate cones as 3:4.

> Let's look at these seven ice cream cones. Three are strawberry and four are chocolate, so we say that the ratio of strawberry

> 1

Ratio tells us how much we have of one amount compared to another amount.

Simplifying ratios

As with fractions, we always simplify ratios when we can. We do this by dividing both numbers in the ratio by the same number.

Proportion

Proportion is another way of comparing. Instead of comparing one amount with another, as with ratio, proportion is comparing a part of a whole with the whole amount.

Proportion tells us how much we have of something compared to the whole amount.

-

Proportion as a fraction

We often write proportion as a fraction. Here are 10 cats. What fraction of them is ginger?

Four out of the 10 cats are ginger.
So, ginger cats make up four-tenths (4/10) of the whole amount.

2
We simplify fractions if we can, so we divide the numerator and denominator of $4 / 10$ by 2 to make it $2 / 5$.

So, the proportion of ginger in the whole group, written as a fraction, is $2 / 5$.

PROPORTION OF GINGER CATS $=\frac{2}{5}$

Proportion as a percentage

Percentages are another way of writing fractions, so a proportion can be expressed as a percentage, too. What percentage of the cats is grey?

There is one grey cat out of 10 , so the proportion as a fraction is $1 / 10$.

2
To change $1 / 10$ into a percentage, we rewrite it as equivalent hundredths, so $1 / 10$ becomes $10 / 100$.

3We know that "ten out of one hundred" is the same as 10%, so the percentage of grey cats in the group is 10%.

Scaling

Scaling is making something larger or smaller while keeping everything in the same proportion - which means making all the parts larger or smaller by the same amount.

We can use scaling to change numbers, amounts, or the sizes of objects or shapes.

Scaling down

A photograph, like this robot selfie, is a perfect example of scaling down.

1In the photo, the robot looks the same, but smaller. Every part of him has been reduced in size by the same amount.

2The robot is 75 cm tall in real life. In the photo, he is 15 cm tall. So, he is five times smaller in the photo.

3The robot's body is 40 cm wide. In the photo, it's 8 cm wide, which is five times smaller than in real life.

Scaling up

Scaling up is making every part of a thing larger. We can scale up amounts as well as objects and measurements.

$50 \mathrm{~g} \times 2=100 \mathrm{~g}$

? g
? g

mAKES 6 CAKES

MAKES 12 CAKES
On page 70, we saw a recipe for six chocolate treats. To make 12, we'll need more ingredients. But how much more of each?

2
We know that 12 is 2 times 6. So, if we multiply both ingredients by two, we can make twice as many treats.

12 treats are made with 100 g of chocolate and 80 g of puffed rice

3So, to scale up a recipe, we need to multiply all the ingredients by the same amount.

Scale on maps

Scaling is useful for drawing maps. We couldn't use a life-size map - it would be too big to carry around! We write a map scale as a ratio, which tells us how many units of distance in real life are equal to one unit on the map.
The scale bar
tells us that
1 cm on the
map stands
for 10 Om

Scale factors

A scale factor is the number we multiply or divide by when we scale up or down.

All three sides have doubled in length

1If we scale something by a factor of 2 , we make it two times larger. So, this triangle with sides of 2.8 cm becomes a triangle with sides of 5.6 cm .

- If we scaled the triangle back to its original size, we would say is was scaled by a negative factor of -2 .

TRY IT OUT

How tall is a T. rex?

This scale model of $a T$. rex has a scale factor of 40 . If the model's height is 14 cm and its length is 30 cm , can you work out the height and length of the real dinosaur?

Answers on page 319

Different ways to describe fractions

Decimals and percentages are just different ways of describing fractions. Ratio and proportion can be written as fractions, too.

Fractions, decimals, and percentages are all linked, and we can express one as any of the others.

Proportion as a fraction, a decimal, or a percentage

12 out of 20 . roses are pink

Look at these 20 roses. There are 12 pink and 8 red roses. Let's describe the proportion of pink roses as a fraction, a decimal, and a percentage.

TAs a fraction
There are 12 pink roses out of a total of 20 roses. So, the proportion of pink roses is $12 / 20$ or, if we simplify it, $3 / 5$.

[^12]
3

As a percentage
If we rewrite $6 / 10$ as hundredths, we get 60/100, which can also be written as 60%.
So, 60% of the roses are pink.

PROPORTION OF PINK ROSES

$$
\frac{3}{5}=0.6=60 \%
$$

Ratio and fractions

On page 70, we learned how to write ratios using two dots between the numbers. But we can write ratios as fractions, too.

$$
3: 12 \text { or } 1: 4=\frac{3}{12} \text { or } \frac{1}{4} \quad \begin{aligned}
& \text { The second number in the ratio }
\end{aligned}
$$

1Now we have three roses and 12 daisies. We write the ratio of roses to daisies as 3:12, then simplify it to 1:4.

RATIO OF ROSES TO DAISIES

The first number in the ratio becomes the fraction's numerator

Common fractions, decimals, and percentages
This table shows the different ways we can show or write the same fraction.

Part of a whole	Part of a group	Fraction in words	Fraction in numbers	Decimal	Percentage
		ONE-TENTH	$\frac{1}{10}$	0.1	10\%
		ONE-EIGHTH	$\frac{1}{8}$	0.125	12.5\%
π	$\bigcirc \bigcirc \bigcirc$	ONE-FIFTH	$\frac{1}{5}$	0.2	20\%
		ONE-QUARTER	$\frac{1}{4}$	0.25	25\%
		THREE-TENTHS	$\frac{3}{10}$	0.3	30\%
	\bigcirc	ONE-THIRD	$\frac{1}{3}$	0.33	33\%
	O	TWO-FIFTHS	$\frac{2}{5}$	0.4	40\%
		ONE-HALF	$\frac{1}{2}$	0.5	50\%
	\bigcirc	THREE-FIFTHS	$\frac{3}{5}$	0.6	60\%
		THREE-QUARTERS	$\frac{3}{4}$	0.75	75\%

TRY IT OUT

How much do you know?
Try these baffling brainteasers and see if you can get 100% right!

Answers on page 319

[^13]

Write the ratio 4:6 as a fraction. Now simplify it.

Addition

When we bring two or more quantities together to make a larger quantity, it's called addition or adding. There are two ways to think about how addition works.

It doesn't matter which way you add numbers together. The answer will be the same.

What is addition?

Look at these oranges. When we combine 6 oranges and 3 oranges, there are 9 oranges altogether. We can say we have added 6 oranges and 3 oranges, which equals 9 oranges.

Adding works in any order

It doesn't matter which way we add amounts.
The total will be the same. We say that addition is commutative.

1Look at this calculation. It says that if we add 2 to 5 , we get 7 .

2
Now let's switch the numbers around on the left-hand side of the equals sign. It doesn't matter which order we add numbers, the total will be the same.

$$
5+2=7
$$

$$
2+5=7
$$

REAL WORLD MATHS

The ancient calculator

The earliest type of calculator was the abacus, used in ancient Egypt, ancient Greece, and other places around the world. The abacus helped people calculate amounts, with beads on different rows used to represent different numbers, like ones, tens, and hundreds.

Adding as counting all

We can think of addition as combining two or more amounts into a single amount and then counting them. This way of adding is called counting all.

one hand and 5 in the other.

$2+5=?$

$$
2+5=7
$$

Count on 1 more

Adding as counting on

There is another way to think about addition. To add one number to another, we can simply count on from the larger number in a series of steps that's equal to the smaller number. This is called counting on.

First, he counts on by adding the first
red box to get 6 .

This time the robot is adding 5 blue boxes and 2 red boxes. He can do this by counting on from 5 .

$$
5+2=?
$$

Then he counts on again by adding the second red box to get 7 .

Count on 1 more from 6 to get 7

$$
5+2=7
$$

Adding with a number line

Doing calculations in your head can be tricky. We can use a number line to help us with calculations, including addition. It is most useful for calculations with numbers up to 20.

Let's use a number line to find out the answer when we add 4 and 3 .

> 2
> First, we draw a line and mark it with numbers from 0 to 10 .

3
This calculation starts with the number 4 , so first find 4 on the number line.

4
We need to add 3 to 4 , so next jump 3 places to the right. This takes us to 7 .

$4+3=?$

5
So, $4+3=7$

$$
4+3=7
$$

Making leaps

Some calculations involve using larger numbers. We can still use a number line, we just have to make bigger jumps to find the answer.

Jump 2 lots of 10 \qquad

Adding with a number grid

To add numbers to 100 , you can also use a number grid, or 100 square. This shows the numbers from 1 to 100 in rows of 10. You can do calculations by jumping from square to square.

Number grids are useful for calculations with numbers to 100 which are tricky to work out on a number line.

Look at this number grid. We can use it to add numbers in two stages. To add 10, we simply jump down to the next row, because there are 10 numbers in each row.

2To add 1 , we just jump 1 square to the right. When we get to the end of a row, we move down to the next row and carry on counting from left to right.

$56+26=?$										Let's add 56 and 26 using this number grid.
1	2	3	4	5	6	7	8	9	10	
11	12	13	14	15	16	17	18	19	20	4. The addition starts with 56,
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	There are 2 groups of 10
41	42	43	44	45	46	47	48	49	50	down 2 rows. This takes us to 76.
51	52	53	54			57	58	59	60	
61	62	63	64			67	68	69	70	Now we add the 6 ones from our 26 by jumping 6 squares
71	72	73	74			77	78	79		to the right. This takes us to 82 .
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	

$$
56+26=82
$$

Addition facts

An addition fact is a simple calculation that you remember without having to work it out. Your teacher might also call this a number bond or an addition pair. Knowing simple addition facts will help you with harder calculations.

$$
\begin{aligned}
& 0+10=10 \\
& 1+9=10 \\
& 2+8=10 \\
& 3+7=10 \\
& 4+6=10 \\
& 5+5=10 \\
& 6+4=10 \\
& 7+3=10 \\
& 8+2=10 \\
& 9+1=10 \\
& 10+0=10
\end{aligned}
$$

$$
1+1=2
$$

$$
2+2=4
$$

$$
3+3=\mathbf{6}
$$

$$
4+4=8
$$

$$
5+5=10
$$

$$
6+6=12
$$

$$
7+7=14
$$

$$
8+8=16
$$

$$
9+9=18
$$

$$
10+10=\mathbf{2 0}
$$

2These addition facts are all doubles. We call them the addition doubles to $10+10$. This time, the answers are different.

TRY IT OUT

Using addition facts

Can you use the addition facts for 10 and the addition doubles to $10+10$ to work out the answers to these calculations?

Answers on page 319
(1) $60+40=$?
(4) $0.1+0.9=$?
(2) $700+700=?$
(5) $70+30=?$
(3) $20+80=$? (6) $4000+4000=$?

Partitioning for addition

Adding numbers is often easier if you split them into numbers that are easier to work with and then add them up in stages. This is called partitioning. There are a few different ways to do it.

Partitioning means breaking numbers down then adding them together in stages.

Let's add 47 and 35 .

- To help with the tricky numbers, we can put the numbers on a grid and label the columns to show their place values.

3We start by adding the tens together and writing the answer to the right of the equals sign: $40+30=70$

4And next, we add the ones together: $7+5=12$

5Now it's easy to recombine our two answers to get the total: $70+12=82$

By partitioning the numbers, we've found
that $47+35=82$

$$
47+35=?
$$

\top	0		
4	7	$+3$	\top
:---			
$?$			

T	0		T	0		T	0
4	0	+	3	0	$=$	7	0

	T	0
Recombine the tens and ones to find the total	8	2

$$
47+35=82
$$

Partitioning using multiples of 10 Another way to partition is to split just one number, so it's easier to add on. It often helps to split one number into a multiple of 10 and another number.

Expanded column addition

To add together numbers that have more than two digits, we can use column addition. There are two ways to do it. The method shown here is called expanded column addition. The other method, column addition, is shown on pages 86-87.

Let's add 385 and 157 using expanded column addition.

2
Start by writing the two numbers out like this, with digits that have the same place value lined up one above the other. It might help you to label the place values, but you don’t have to.

> 3
> Now we're going to add each of the digits in the top row to the digits that sit beneath them in the bottom row, starting with the ones.

4First, add 5 ones and 7 ones. The answer is 12 ones. On a new line, write 1 in the tens column and 2 in the ones column.

When we do expanded column addition, it's important to line up the digits by their place values.

5
When we add together
the 8 and 5 , we're actually adding 80 and 50 . The answer is 130 . On a new line, write 1 in the hundreds column, 3 in the tens column and zero in the ones column.

Next, we're going to add the hundreds together. We add 100 and 300 to give 400. On a new line, write 4 in the hundreds column, 0 in the tens column, and 0 in the ones column.

7Now we have added the digits in the bottom row to the digits in the top row, we add the three lines in our answer together:
$12+130+400=542$

So, $385+157=542$

$$
385+157=542
$$

Expanded column addition is just like partitioning - we break tricky numbers into ones, tens, and hundreds.

TRY IT OUT

Add it up

Now you have learned this useful method for adding difficult numbers, why don't you give these calculations a go?

$$
\text { (1) } 547+276=\text { ? }
$$

$$
\text { (2) } 948+642=\text { ? }
$$

$$
\text { (3) } 7256+4715=\text { ? }
$$

Answers on page 319

Column addition

Now we're going to look at another method of column addition. This is quicker than expanded column addition (pages 84-85) because instead of writing ones, tens, and hundreds on separate lines, we put them all on one line.

Once you understand how to do column addition, you can use it for any addition calculation involving large numbers.

Let's use column addition to add 2795 and 4368.

2Start by writing both numbers on a place-value grid, with the larger number above the smaller number. If you need to, label the columns.

3Now we're going to add each number in the bottom row to the number that sits above it in the top row, starting with the ones.

4
First, add 5 to 8 . The answer is 13. Write the 3 in the ones column. The 1 stands for 1 ten, so we carry it over into the tens column to add on later.

5Next, we add 9 tens to 6 tens. The answer is 15 tens. Add on the 1 ten we carried over from the ones addition to make 16 tens. Write the 6 in the tens column and carry the 1 to the hundreds column.

$4368+2795=?$

Th	H	T	0_{1}.	Place the larger
4	3	6	8	number above
$+\quad 2$	7	9	5	the smaller one

$+$| Th | ${ }^{H}$ | ${ }^{\top}$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 3 | 6 | 8 |
| + | 7 | 9 | 5 |

Now we add 7 hundreds to
3 hundreds. The answer is 10 hundreds. Add on the 1 hundred we carried over to make ll hundreds. Write a 1 in the hundreds column and carry the other 1 to the thousands column.

7
Finally, we can add the thousands. Add 2 thousands to 4 thousands. The answer is 6 thousands. Add on the 1 thousand carried over to make 7 thousands. Write the 7 in the thousands column.

So, $4368+2795=7163$

Add the carried 1 hundred to the 10 hundreds to make 11 hundreds

$4368+2795=7163$

Adding decimals

We add decimals in the same way as we add whole numbers we just make sure that digits of the same value are lined up underneath each other. Let's add 38.92 and 5.89 .

1First, write the larger number above the smaller number, making sure to line up the decimal points. Add another decimal point on the bottom row. If you need to, label the columns to show the place value of each.

Now we can find the total just as we do with whole numbers.

So, $38.92+5.89=44.81$

TRY IT OUT

Can you do it?

Now you've seen how to do column addition, can you use it for these sums?

(1) $1639+6517=$?

(2) $7413+1781=$?
(3) $45.36+26.48=?$

Answers on page 319

Subtraction

Subtraction is the opposite, or the inverse, of addition. There are two main ways we can think about subtraction - as taking away from a number lalso called counting back) or as finding the difference between two numbers.

We can use a number line for subtraction by counting either forward or back along the line.

What is subtraction?

Sometimes we reduce a number by another number. This is called subtraction as taking away. Look at these oranges. When we subtract 2 oranges from 6 oranges, there are 4 oranges left.

This symbol means subtract or minus:

When we subtract 2 oranges from 6 oranges we are left with 4 oranges
 means equals
$=4$

Subtracting is the opposite of adding
It's easy to remember how to subtract, because it's just the opposite to addition. With addition, we add numbers on, and with subtraction we take numbers away.

To subtract we move from right to left

To add, we move from left to right

Subtraction

Let's use this number line to subtract 4 from 5. This takes us 4 steps back along the number line to the number 1 .

$$
5-4=1
$$

2

Addition

Here, the 4 has been added to 5 , and the answer is 9 . We have moved the same distance from 5 as we did when subtracting, just in the other direction.

$$
5+4=9
$$

Subtracting as counting back

One way to think of subtraction is called counting back.
When we subtract one number from another, we are just counting back from the first number by a number of steps that's equal to the second number.

\checkmark
Look at the calculation 8 - 3 on this number line.

2To subtract 3 from 8, first we find 8 , then count back 3 places. This takes us to 5 .

$$
8-3=?
$$

$$
8-3=5
$$

Subtracting as finding the difference

We can also think of subtraction as finding the difference between two numbers. When we are asked to find the difference, we are really just finding how many steps it takes to count from one to the other.

Then we count how many places we have to move to reach the first number:

1To find the difference between two numbers, we can count up a number line. Let's take another look at the calculation 8 - 3 .

2All we have to do is find 3 on the number line and see how many jumps it takes to get to 8 . It takes 5 jumps.

$$
8-3=?
$$

$$
8-3=5
$$

Subtraction facts

There are some simple facts that you can learn for subtraction to make tricky calculations much easier. When you've learned them, you'll be able to apply them to other calculations.

$$
\begin{aligned}
& 10-0=10 \\
& 10-1=9 \\
& 10-2=8 \\
& 10-3=7 \\
& 10-4=6 \\
& 10-5=5 \\
& 10-6=4 \\
& 10-7=3 \\
& 10-8=2 \\
& 10-9=1 \\
& 10-10=0
\end{aligned}
$$

These are the subtraction facts for 10. As the number we subtract gets larger, the difference between the two numbers gets smaller.

$$
\begin{array}{r}
2-1=1 \\
4-2=2 \\
6-3=3 \\
8-4=4 \\
10-5=5 \\
12-6=6 \\
14-7=7 \\
16-8=8 \\
18-9=9 \\
20-10=10
\end{array}
$$

These subtraction facts are the opposite, or inverse, of the addition facts we looked at on page 82.
-

Partitioning for subtraction

Subtracting numbers is often simpler if you split them into numbers that are easier to work with and then subtract them in stages. This is called partitioning. We usually partition just the number being subtracted.Let's subtract 25 from 81 by partitioning the number 25 .

2
To help with the tricky numbers, we can put the numbers on a grid and label the columns to show their place values.

First, we subtract the tens
from 81: $81-20=61$

4
Next, we subtract the ones from the remaining 61: 61-5=56

By splitting the calculation into two easy steps, we've found that: $81-25=56$

$$
81-25=?
$$

10
$81-25$

$$
\begin{array}{lllllll}
\top & 0 & & & 0 \\
8 & 1 & - & 2 & 0 & & \\
&
\end{array}
$$

$$
\begin{array}{lllllll}
\top & 0 & & \top & 0 \\
6 & 1 & - & 5 & = & & \\
5
\end{array}
$$

TRY IT OUT

Partitioning practice

There were 463 flowers in the field, and Tessa picked 86 of the flowers. How many were left in the field?

To work out the answer, we can do a subtraction calculation.

(2)There were 463 flowers and 86 were taken away, so the calculation you need to do is: 463-86

Try partitioning the number 86 into tens and ones, and subtract it in stages from 463.

Subtracting with a number line

We have already seen that a number line can help us with simple subtraction. If we use what we know about partitioning, we can also use a number line to tackle more difficult calculations.

When you use a number line for subtraction, it doesn't matter if you count down from the first number or up from the second number, the answer will be the same.
\qquad

Counting back

Let's use a number line for $132-54$. To make it easy to move along the line, we're going to partition 54 into three parts.

2
Starting from 132, we count back 2 to 130. Next, we move 50 by making 5 jumps of 10 each, taking us to 80 . Finally, we move another 2 places.

$132-54=$?

$132-54=78$
Start at 54 and count to the right
Stop counting at 132

Counting up

Remember, we can also subtract by counting up. This is called finding the difference. Let's look again at 132-54.
2. This time, we're going to start at 54 , the second number in our subtraction calculation, and count up until we get to the first number, 132.

In all, we've moved 54 places, and we've arrived at 78 . So, $132-54=78$

Shopkeeper's addition

People who work in shops often need to work out quickly how much change to give a customer. They often count up in their heads to help them work out the correct change. This method of subtracting is called shopkeeper's addition.

1
Peter's groceries cost $£ 7.35$, and he pays with a $£ 10$ note. How much change is he due? We can write this as $£ 10.00-£ 7.35$

2 First, let's add 5 p to get $£ 7.40$.

Next, we add 60p to take us to $£ 8$.

4
Now, we can add $£ 2$ to take us up to $£ 10$.

5Finally, we combine the amounts we've added to find the total difference:
$£ 0.05+£ 0.60+£ 2.00=£ 2.65$

So, Peter is due $£ 2.65$ change
from his $£ 10$ note.

$£ 10.00-£ 7.35=£ 2.65$

TRY IT OUT

Be the shopkeeper

Can you use the method we've learned to work out the change for these bags of shopping?

$£ 10.00-£ 7.35=?$

$£ 7.35+£ 0.05=£ 7.40$
$£ 7.40+£ 0.60=£ 8.00$
$£ 8.00+£ 2.00=£ 10.00$
$£ 7.35+£ 2.65=£ 10.00$

Expanded column subtraction

To find the difference between numbers with more than two digits, we can use column subtraction. The method shown here, called expanded column subtraction, is useful if you find the ordinary column subtraction (shown on pages 96-97) difficult.

Let's think of the calculation $324-178$ as
finding the difference between 324 and 178.

2
Start by writing the two numbers out like this, with digits that have the same place value lined up one above the other. It might help you to label the place values, but you don't have to.

Now we're going to add numbers that are easy to work with to 178 until we get to 324 .

4
First, we add on ones that will take 178 up to the nearest multiple of ten. Adding 2 to 178 makes 180 . Write 2 in the ones column. Keep track of the total, by writing 180 on the right.

5
Next, we add tens. Adding 20 to 180 makes 200 , the nearest multiple of 100 . Write the 2 in the tens column and the 0 in the ones column. Write the new total on the right.

$$
324-178=?
$$

$$
\left.\begin{array}{cccc}
H & \text { T } & 0 \\
3 & 2 & 4
\end{array} \begin{array}{lll}
\\
1 & 7 & 8
\end{array} \begin{array}{l}
\text { L......... We are going to } \\
\text { add numbers on } \\
\text { to } 178 \text { until we } \\
\text { reach } 324
\end{array}\right)
$$

$$
\begin{aligned}
& \text { value are lined } \\
& \text { up like this }
\end{aligned}
$$

Now, we add hundreds. Adding 100 takes us from 200 up to 300 . Write the 1 in the hundreds column and the zeros in the tens and ones columns. Write the new total on the right.

7Now we just need to add the 24 that will take the total from 300 to 324 . Write the 2 in the tens column and the 4 in the ones column.

8Finally, we need to find the total of all the numbers that we added on: $2+20+100+24=146$

Adding 24 to 300 takes the total up to 324

Find the total of the numbers we've added on

So, $324-178=146$

TRY IT OUT

Find the difference
Can you use expanded column subtraction to find the difference between these numbers?

Answers on page 319

$$
\text { (1) } 283-76=\text { ? }
$$

(2) $817-394=$?
(3) $9425-5832=$?

We arrived at our answer by adding ones, tens, and hundreds in steps, like shopkeeper's addition (page 93).

Column subtraction

Using column subtraction is an even quicker way of subtracting large numbers than expanded column subtraction (see pages 94-95). It looks tricky to subtract as we go, but we can exchange numbers with other columns to help us.

1
Let's subtract 767 from 932 using column subtraction.

2
Start by writing the two numbers out like this, with digits that have the same place value lined up one above the other. It might help you to label the place values, but you don't have to.

3
Now we are going to subtract each of the digits on the bottom row from the digit above it on the top row, starting with the ones.

4We can't subtract 7 ones from 2 ones here, so let's exchange 1 ten from the tens column for 10 ones. Write a little 1 next to the 2 in the ones column to show that we now have 12 ones.

5Change the 3 in the tens column into a 2 to show that we have exchanged a ten.

$932-767=$?

H 0	3	$\begin{aligned} & 2^{0} \cdot \cdots \cdots \cdots \cdot \text { Write the } \\ & \text { numbers so that } \end{aligned}$	
9	3		
7	0	7	the digits with the same place
			value are lined up like this

Change this from 3 tens to 2 tens because we exchanged 1 ten for 10 ones

Now we can subtract 7 ones from 12 ones instead. The answer is 5 ones. Write the 5 in the ones column.

7Next, we subtract the tens. We can't subtract 6 tens from 2 tens so we need to exchange one of the hundreds for 10 tens. Write a 1 next to the 2 in the tens column to show that we now have 12 tens.

©
Change the 9 in the hundreds column into an 8 to show that we have just exchanged one of the hundreds for 10 tens.

9
Now we can subtract 6 tens from 12 tens. The answer is 6 tens. Write the 6 in the tens column.

10Finally, we need to subtract 7 hundreds from 8 hundreds, leaving 1 hundred. Write the 1 in the hundreds column.

Change this from 9 hundreds to 8 hundreds because we exchanged one of the hundreds for
 10 tens

Now we can subtract 6 tens from 12 tens

$$
932-767=165
$$

When we need to subtract a larger amount from a smaller amount, we exchange 1 ten, hundred, or thousand from the column to the left.

Multiplication

There are two main ways to think about how multiplication works. We can think of it as putting together, or adding, lots of quantities of the same size. We can also think of it as changing the scale of something - we'll look at this on page 100.

What is multiplication?

T
Look at these oranges. There are 3 groups of 4 oranges. Let's find out how many there are altogether.

2
To make them easier for us to count, let's arrange the 3 groups of 4 oranges into 3 rows of 4 . We call this arrangement an array. Now it's easier for us to count them up.

3If we count up the oranges, we can see that there are 12 altogether. We can write this as a multiplication calculation like this: $4 \times 3=12$

4Now let's line up some oranges into 4 rows of 3 instead. How many are there in total? Is it a different number of oranges to when we had 3 rows of 4 oranges?

$$
4 \times 3=12
$$

${ }^{\ddots} \ddots_{\ell}, \ldots$. This symbol means multiply or times

$3 \times 4=12$

The result of

[^14]
Multiplication as repeated addition

We can think of multiplication as adding together more than one quantity of the same size. We call this repeated addition. To multiply two numbers, we just have to add one number in the calculation to itself the number of times of the other number.

Let's work out the answer to the calculation 5×4 using some apples. We want to multiply 5 by 4 , so let's look at 4 rows of 5 apples to help us find the answer.

$$
5 \times 4=?
$$

So, using repeated addition, we can
see that $5 \times 4=20$

$$
5 \times 4=20
$$

TRY IT OUT

Multiplication challenge
 Here are some examples
 of repeated addition.
 (2) $8+8+8+8+8+8+8=?$
 (1) $6+6+6+6=?$

Can you write them as a multiplication calculation and work out the answer?

Answers on page 319
(3) $9+9+9+9+9+9=$?
(4) $13+13+13+13+13=?$

It doesn't matter which order you multiply numbers in - the total will be the same.

Multiplication as scaling

Repeated addition is not the only way to think about multiplication．When we change the size of an object， we carry out a kind of multiplication called scaling． We also use scaling when we multiply with fractions．

We use scaling to change the sizes of objects and to multiply with fractions．

．Look at these three buildings．
They are all different heights．

2
The second building is twice as tall as the first，so its height has been scaled up by a factor of 2 ．We can write this as： $10 \times 2=20$

3
The third building is two times taller than the second，so we can say it＇s been scaled up by a factor of 2 ．We can write this as： $20 \times 2=40$

4The third building is four times taller than the first．It has been scaled up by a factor of 4．We can write this as： $10 \times 4=40$

We could also see each building as being scaled down．The second building is half the height of the third building．We can write this using a fraction： $40 \times 1 / 2=20$

Scaling and fractions

As we＇ve just seen， we can also scale with fractions．Multiplying withproper fractions， which are fractions less than one，makes numbers smaller， not bigger．

Look at this calculation．We want to multiply $1 / 4$ by $1 / 2$ ．

$\frac{1}{4} \times \frac{1}{2}=?$

2
Look at this shape．It＇s a quarter of a circle．To multiply a quarter by a half，we simply need to take away half of the quarter．

You can see that half of the quarter is one－eighth of a circle．

4
So， $1 / 4 \times 1 / 2=1 / 8$

$$
\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}
$$

Factor pairs

Two whole numbers that are multiplied together to
make a third number are called factor pairs of that
Two whole numbers that are multiplied together to
make a third number are called factor pairs of that number. Every whole number has a factor pair, even if it's only itself multiplied by 1.

Every whole number has at least one factor pair - the number 1 and itself.

Factor pairs for 1 to 12

Learning factor pairs is the same as learning the number facts for multiplication. Knowing these basic pairs will help you with multiplication calculations. This table shows all the factor pairs of the numbers from 1 to 12. Each pair has also been drawn as an array, like the arrays we saw on pages 98-99.

TRY IT OUT

Finding pairs

Can you find all the factor pairs for each of these numbers? Draw them out as arrays if you find it helpful.

(1) 14
 (2) 60
 (3) 18
 (4) 35
 (5) 24

Answers on page 319

Number	Factor pairs	Array
1	1,1	-
2	1,2	\bigcirc
3	1,3	$\bigcirc \bigcirc$
4	1,4	$\bigcirc \bigcirc \bigcirc$
	2,2	80
5	1,5	0000
6	1,6	00000
	2,3	000
7	1,7	00000
8	1,8	0000000
	2,4	
9	1,9	0000000
	3,3	
10	1,10	000000000
	2,5	00000
11	1,11	000000000
12	1,12	0000000000
	2,6	000000
	3,4	0000

Counting in multiples

When a whole number is multiplied by another whole number, the result is called a multiple - we looked at multiples on pages $30-31$. When we're doing multiplication calculations, it helps to know how to count in multiples.

1Counting in 2s
Look at this number line. It shows the numbers we get when we count up in twos from zero. Each number in the sequence is a multiple of 2 . For example, the fourth jump takes us to 8 , so $2 \times 4=8$

2
Counting in 3s
This number line shows the numbers we get when we start to count in multiples of three from zero. The fifth jump takes us to 15 , so $3 \times 5=15$

3

Counting in 6s

Now look at this number line. It shows us the first few multiples of six. The third jump takes us to 18 , so we can say that $6 \times 3=18$

Counting in 8s

This number line shows us the first three multiples of 8 when we count up from zero. The second jump takes us to 16 , so $8 \times 2=16$

5These number lines show us the first few multiples of 2, 3, 6, and 8. Learning to count in multiples will help us with other multiplication tables, which we'll look at on pages 104-105.

$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

TRY IT OUT

Find the multiples

Now you've seen the first few multiples of the numbers $2,3,6$, and 8 , can you use a number line, or count in your head, to find the next three multiples for 7,9 , and 11 ?

Answers on page 319
(1) 7, 14, 21 ...
(2) $9,18,27$...
(3) 11, 22, $33 \ldots$

	+2		+2		+2	
	2×3		$\times 4$		$2 \times 5=10$	
4	5	6	7	8	9	10

Add 3 each
$\begin{array}{llllllllllllll}8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21\end{array}$

Multiplication tables

The multiplication tables are really just a list of the multiplication facts about a particular number. You need to learn them - but once you know them, you'll find them very useful when you're doing other calculations.

1x table					$2 \times$ table					$3 x$ table				
1	\times	0	$=$	0	2	\times	0	$=$	0	3	\times	0	$=$	0
1	\times	1	=	1	2	\times	1	=	2	3	\times	1	=	3
1	\times	2	=	2	2	\times	2	=	4	3	\times	2	=	6
1	\times	3	=	3	2	\times	3	=	6	3	\times	3	=	9
1	\times	4	=	4	2	\times	4	=	8	3	\times	4	=	12
1	\times	5	=	5	2	\times	5	=	10	3	\times	5	=	15
1	\times	6	=	6	2	\times	6	=	12	3	\times	6	=	18
1	\times	7	=	7	2	\times	7	=	14	3	\times	7	=	21
1	\times	8	=	8	2	\times	8	=	16	3	\times	8	=	24
1	\times	9	=	9	2	\times	9	=	18	3	\times	9	=	27
1	\times	10	=	10	2	\times	10	=	20	3	\times	10	=	30
1	\times	11	=	11	2	\times	11	=	22	3	\times	11	=	33
1	\times	12	=	12	2	\times	12	=	24	3	\times	12	=	36
		\times	ble				$\times 1$	ble				\times t	ble	
4	\times	0	=	0	5	\times	0	=	0	6	\times	0	$=$	0
4	\times	1	=	4	5	\times	1	=	5	6	\times	1	=	6
4	\times	2	=	8	5	\times	2	=	10	6	\times	2	=	12
4	\times	3	=	12	5	\times	3	=	15	6	\times	3	=	18
4	\times	4	=	16	5	\times	4	=	20	6	\times	4	=	24
4	\times	5	=	20	5	\times	5	=	25	6	\times	5	=	30
4	\times	6	=	24	5	\times	6	=	30	6	\times	6	=	36
4	\times	7	=	28	5	\times	7	=	35	6	\times	7	=	42
4	\times	8	=	32	5	\times	8	=	40	6	\times	8	=	48
4	\times	9	=	36	5	\times	9	=	45	6	\times	9	=	54
4	\times	10	=	40	5	\times	10	=	50	6	\times	10	=	60
4	\times	11	=	44	5	\times	11	=	55	6	\times	11	=	66
4	\times	12	=	48	5	\times	12	=	60	6	\times	12	=	72

TRY IT OUT

The $13 \times$ table
You should know your multiplication tables up to 12 .
Here are the first four lines of the $13 x$ table. Can you
work out the rest?
Answers on page 319

$$
\begin{aligned}
& 13 \times 1=13 \\
& 13 \times 2=26 \\
& 13 \times 3=39 \\
& 13 \times 4=?
\end{aligned}
$$

$7 x$ table

7	\times	0	$=$	0	8	\times	0	=	0	9	\times	0	$=$	0
7	\times	1	=	7	8	\times	1	$=$	8	9	\times	1	=	9
7	\times	2	=	14	8	\times	2	=	16	9	\times	2	=	18
7	\times	3	=	21	8	\times	3	=	24	9	\times	3	=	27
7	\times	4	=	28	8	\times	4	=	32	9	\times	4	=	36
7	\times	5	=	35	8	\times	5	=	40	9	\times	5	=	45
7	\times	6	=	42	8	\times	6	=	48	9	\times	6	=	54
7	\times	7	=	49	8	\times	7	=	56	9	\times	7	=	63
7	\times	8	=	56	8	\times	8	=	64	9	\times	8	=	72
7	\times	9	=	63	8	\times	9	=	72	9	\times	9	=	81
7	\times	10	=	70	8	\times	10	=	80	9	\times	10	=	90
7	\times	11	=	77	8	\times	11	$=$	88	9	\times	11	=	99
7	\times	12	=	84	8	\times	12	=	96	9	\times	12	=	108

$8 x$ table

$8 \times 0=0$

$9 x$ table

10x table

$10 \times 0=0$
$10 \times 1=10$
$10 \times 2=20$
$10 \times 3=30$
$10 \times 4=40$
$10 \times 5=50$
$10 \times 6=60$
$10 \times 7=70$
$10 \times 8=80$
$10 \times 9=90$
$10 \times 10=100$
$10 \times 11=110$
$10 \times 12=120$

12x table

$12 \times 0=0$
$12 \times 1=12$
$12 \times 2=24$
$12 \times 3=36$
$12 \times 4=48$
$12 \times 5=60$
$12 \times 6=72$
$12 \times 7=84$
$12 \times 8=96$
$12 \times 9=108$
$12 \times 10=120$
$12 \times 11=132$
$12 \times 12=144$

The multiplication grid

We can arrange all the numbers in the multiplication tables in a grid called a multiplication grid. The factors appear along the top of the grid and down one side. The answers are in the middle.

Multiplication patterns and strategies

There are lots of patterns and simple strategies that will help you to learn your multiplication tables and even go beyond them. Some of the easiest to remember are shown in the table on this page.

To multiply	How to do it	Examples
$\times 2$	Double the number - that is, add it to itself.	$2 \times 11=11+11=22$
$\times 4$	Double the number, then double again.	$8 \times 4=32$, because double 8 is 16 and double 16 is 32 .
$\times 5$	The ones digit of multiples of 5 follow the pattern 5, 0, 5, $0 \ldots$	The first four answers in the $5 \times$ table are $5,10,15$, and 20.
	Multiply by 10 then halve the result.	$16 \times 5=80$, because $16 \times 10=160$, then halve 160 to make 80 .
$\times 9$	Multiply the number by 10 , then subtract the number.	$9 \times 7=(10 \times 7)-7=63$
	For calculations up to 9×10, you can use a method that involves counting your fingers.	To work out 3×9, hold your hands up with your palms facing you. Then hold down your third finger from the left. There are 2 fingers to its left and 7 to its right, so the answer is 27 .
$\times 11$	To multiply the numbers 1 to 9 by 11 , write the digit twice, once in the tens place and once in the ones place.	$4 \times 11=44$
$x 12$	Multiply the original number by 10 , then multiply it by 2 , then add the two answers.	$12 \times 3=(10 \times 3)+(2 \times 3)=30+6=36$

Multiplying by 10, 100 , and 1000

Multiplying by 10,100 , and 1000 is straightforward. To multiply a number by 10 , for example, all you have to do is shift each of its digits one place to the left on a place-value grid.

To multiply a number by 10 , we just move each of its digits one place to the left.
-

Multiplying by 10

Let's multiply 3.2 by 10. To work out the answer, we just move each digit one place to the left on the place-value grid. So, 3.2 becomes 32 , ten times bigger than 3.2.

2Multiplying by 100
Let's try multiplying 3.2 by 100 this time. To multiply a number by 100, we shift each digit two places to the left. So, 3.2 becomes 320, 100 times bigger than 3.2.

3

Multiplying by 1000

Now let's multiply 3.2 by 1000. To do this, we move each digit three places to the left. So, 3.2 becomes 3200, 1000 times bigger than 3.2.

We can keep going like this for 10000,100000 , and even 1000000.
 $\ldots . . . \begin{gathered}\text { Add a } O \text { as a } \\ \text { place holder in }\end{gathered}$ the ones column

TRY IT OUT

Step to the left
Can you use the method we have shown you to work out the answers to these calculations?

Answers on page 319
(1) $6.79 \times 100=$?
(2) $48 \times 10000=$?
(3) $0.072 \times 1000=$?

Multiplying by multiples of 10

To make multiplication calculations involving multiples of 10 easier, you can combine what you know about the multiplication tables with what you know about multiplying by 10.

To multiply a number by a multiple of 10 , break the multiple into 10 and its other factor and do the calculation in steps.

Look at this calculation. We want to multiply 126 by 20 . It looks tricky, but it's simple if you know your multiples of 10.

2
Let's write 20 as 2×10, because multiplying by 2 and 10 are easier than multiplying by 20.

3
Now we can multiply 126 by 2 .
We know that $26 \times 2=52$, so we can work out that $126 \times 2=252$

4
Finally, we just have to multiply 252 by 10 . The answer is 2520.

5
So, $126 \times 20=2520$

$126 \times 20=?$

$126 \times 2 \times 10$

$126 \times 2=252$

$252 \times 10=2520$

$126 \times 20=2520$

TRY IT OUT

Trickier tens

Look at these calculations. Can you break down the multiples of 10 to make each calculation simpler and work out the answer?

Answers on page 319

$$
\text { (1) } 25 \times 50=\text { ? (4) } 43 \times 70=\text { ? }
$$

(2) $0.5 \times 60=$? $50.03 \times 90=$?
(3) $231 \times 30=$? $6824 \times 20=$?

Partitioning for multiplication

Just like we do for addition, subtraction, and division, we can partition numbers in a multiplication calculation in order to make it easier to find the answer.

Partitioning on a number line

We can use a number line to break up one of the numbers in a calculation into two smaller numbers that are easier to work with.

1
Let's use partitioning on a number line to answer this question: a lorry is 12 m long, and a train is 15 times longer. How long is the train?

2To find the answer, we need to multiply the length of the lorry, which is 12 m , by 15 .

We can partition either number in the calculation. Let's partition the number 15 into 10 and 5.

$$
12 \times 15=?
$$

The first jump

4First, multiply 12 by 10 . The answer is 120. So, we jump up the number line from 0 to 120 .

5Next, we multiply 12 by the remaining 5. The answer is 60. So, we jump up the number line 60 from 120 to 180.

$$
12 \times 15=180
$$

Partitioning on a grid

We can also use a grid to help us to partition for multiplication. A grid like this is called an open array.

1Let's take another look at 12×15, this time using a grid. As before, we can partition 15 into 10 and 5.

$$
12 \times 15=?
$$

It doesn't matter which number in a calculation you choose to partition just pick whichever is simpler to work with.

2First, draw a rectangle, like this one, where each side represents a number in the calculation. We can draw the grid roughly, without using a ruler or measuring the sides.

3
We are partitioning 15 into 10 and 5 , so we draw a line through the rectangle to show that it has been partitioned. Label the sides with 12 on one side, and 5 and 10 on the other.

4Now we multiply the sides of each section of the grid. First, multiply 12 by 10 to get 120 . Write $12 \times 10=120$ in the grid.

10

Next, multiply 12 by 5 to get 60 .
Write $12 \times 5=60$ in the grid.

Finally, we just add the two
answers together: $120+60=180$

7
So, $12 \times 15=180$

$12 \times 15=180$

(8)We can also partition this calculation without drawing a grid. We can write it like this:
$12 \times 15=(12 \times 10)+(12 \times 5)=120+60=180$

TRY IT OUT

Partitioning practice

Try using the number line and grid methods to work out the answers to these multiplication calculations. Which method do you prefer?
(1) $35 \times 22=$?
(3) $26 \times 12=$?
(2) $17 \times 14=$?
(4) $16 \times 120=$?

Answers on page 319

The grid method

We can also use a slightly different version of the open array we saw on page 111. We call it the grid method. As you get better, the grid can become simpler and you can find the answers to tricky multiplication calculations faster.

Knowing your multiplication tables and multiples of 10 will help you to get quicker at using the grid method.

Let's use the grid method to work out 37×18.

2
First, draw a rectangle and label the sides with the numbers in the calculation: 37 and 18. We can draw the grid roughly, without using a ruler or measuring the sides.

$$
37 \times 18=?
$$

Label the sides of a rectangle with the numbers in the calculation

37

3Next, we partition 37 and 18 into smaller numbers that are easier to calculate with. Let's split 18 into 10 and 8, and draw a line across the rectangle between the two numbers.

4Now we partition 37 into 10, 10, 10, and 7. Draw lines down the rectangle between each number. Our rectangle now looks like a grid.

Quicker grid methods

When we get more confident with multiplication calculations, we can use quicker forms of the grid method. They are like the one we have just used, but have fewer steps and a simpler grid. Here are two shorter grid methods to work out 37×18.

Draw a

Expanded short multiplication

When one of the numbers in a multiplication calculation has more than one digit, it can help to write the numbers out in columns. There's more than one way to do this. The method shown here, called expanded short multiplication, is useful when you're multiplying a number with more than one digit by a single-digit number.

Let's multiply 423 by 8 using expanded short multiplication.

2
Start by writing the two numbers out like this, with digits that have the same place values lined up one above the other. It might help you to label the place values, but you don't have to.

3
Now we're going to multiply each of the digits on the top row by the number 8 on the bottom row, starting with the ones.

4First, multiply 3 ones by 8 ones. The answer is 24 ones. Write 24 on the first answer row.

$423 \times 8=?$

\times| Th | H | T | O | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | 3^{3}| Write the |
| :--- |
| numbers so |
| that the digits |
| with the same |
| place values are |
| lined up like this |

\intNext, we multiply the 2 tens by 8 ones.
The answer is 16 tens. This is the same as 160 , so we write 160 on the row beneath 24 .

Now we multiply the 4 hundreds by
8 ones. The answer is 32 hundreds.
This is the same as 3200 , so we write 3200 on the line below 160.

(6) \qquad
-

Multiply the hundreds digit by $8 \vdots$

Finally, we just need to add together our three answers to get the final answer:
$24+160+3200=3384$

Add the three
lines in the answer together

So, $423 \times 8=3384$

$423 \times 8=3384$

TRY IT OUT

Stretch yourself

If a single spider has 8 legs, how many legs do 384 spiders have?

(1) mWe can use expanded short multiplication to work out the answer. We simply need to multiply 8 by 384 .

All we need to do is multiply each digit of 384 by 8 then add the answers together.

As you multiply numbers with more digits, you'll need to add extra rows to your answer.

Short multiplication

Now we're going to look at another method of short multiplication. This is quicker than expanded short multiplication (which we looked at on pages 114-15) because instead of writing the ones, tens, and hundreds in our answer on separate lines and then adding them up, we put them all on one line.

Let's use short multiplication to multiply 736 by 4.

$736 \times 4=$?

2
Start by writing the two numbers out like this, with digits that have the same place values lined up one above the other. It might help you to label the place values, but you don't have to.

3
Now we're going to multiply each of the digits on the top row by the number 4 on the bottom row.

4First, multiply 6 ones by 4 ones. The answer is 24 ones. Write the 4 in the ones column. The 2 stands for 2 tens, so we carry it over into the tens column to add on at the next stage.

Th	$\begin{aligned} & H \\ & 7 \end{aligned}$	$\begin{aligned} & \top \\ & \hline \end{aligned}$	$\begin{aligned} & 6^{2} \\ & 4 \end{aligned}$

\times	Th	H	T	0	We're going to

5
Next, we multiply 3 tens by 4 ones.
The answer is 12 tens. Add on the 2 tens we carried over from the ones multiplication to make 14 tens. Write the 4 in the tens column, and carry the 1 to the hundreds column.

6
Now we multiply 7 hundreds by 4 ones.
The answer is 28 hundreds. Add on the 1 hundred we carried over from the tens multiplication to make 29 hundreds. Write the 9 in the hundreds column and the 2 in the thousands column.

The 1 hundred carried over is added to the number in this column.

So, $736 \times 4=2944$

$736 \times 4=2944$

TRY IT OUT

Test your skills

Can you use short multiplication to work out the answers to these calculations? For the numbers that have four digits, just add an extra column to your answer for the thousands.
(1) $295 \times 8=$?
(2) $817 \times 5=$?
(3) $2739 \times 3=$?
(4) $4176 \times 4=$?
(5) $6943 \times 9=$?

Answers on page 319

Expanded long multiplication

When we need to multiply two numbers that both have two or more digits, we can use a method called long multiplication. There are two main ways to do it. The method shown here is called expanded long multiplication. The other method, called long multiplication, is shown on pages 120-23.

1
Let's multiply 37 by 16 using expanded long multiplication.

2
Start by writing the two numbers out like this, with digits that have the same place values lined up one above the other. It might help you to label the place values, but you don't have to.

3Now we're going to multiply each of the digits on the top row by each of the digits on the bottom row. We'll start by multiplying all of the digits on the top row by 6 ones.

4First, multiply 7 ones by 6 ones. The answer is 42 ones. On a new line, write 4 in the tens column and 2 in the ones column.

5Next, multiply 3 tens by 6 ones. The answer is 18 tens, or 180 . On a new line, write 1 in the hundreds column, 8 in the tens column, and 0 in the ones column.

Now we're going to multiply all the digits on the top row by 1 ten and continue to write the answers below.

7
First, multiply 7 ones by 1 ten.
The answer is 7 tens, or 70 . On another new line, write 7 in the tens column and 0 in the ones column.

Next, multiply 3 tens by 1 ten.
The answer is 30 tens, or 300 , because we are multiplying 30 by 10 . On a new line, write 3 in the hundreds column, 0 in the tens column, and 0 in the ones column.

70
300 answer together:

10

Now we have multiplied all the digits on the top line by all the digits on the second line, we add all four lines in our
$42+180+70+300=592$

So, $37 \times 16=592$
Add the four
answers together.

$37 \times 16=592$

Long multiplication

Now we're going to look at another method of long multiplication (which we also looked at on pages 118-19). It's another way to multiply numbers that have two or more digits, but this method is quicker.

1
Let's multiply 86 by 43 using long multiplication.

2
Start by writing the two numbers out like this, with digits that have the same place values lined up one above the other. It might help you to label the place values, but you don't have to.

3Now we're going to multiply each of the digits on the top row by each of the digits on the bottom row. Start by multiplying all the numbers on the top row by 3 ones.

4
First, multiply 6 ones by 3 ones. The answer is 18 ones. On a new line, write 8 in the ones column. The 1 stands for 1 ten, so we carry it over into the tens column to add on at the next stage.

5Next, multiply 8 tens by 3 ones. The answer is 24 tens. Add the 1 ten that we carried over from the ones multiplication to make 25 tens, or 250 . Write the 2 in the hundreds column and the 5 in the tens column.

$86 \times 43=?$

 place value are lined up like this

(e)Now we're going to multiply all the digits on the top row by 4 tens and write the answers on a new line.

7When we multiply by this 4 , we're actually multiplying by 40 , which is 10 times 4 . So, first we put a 0 in the ones column on a new line as a place holder.

©
Now multiply 6 ones by 4 tens.
The answer is 24 tens. Write the 4 in the tens column and carry the 2 into the hundreds column to add on at the next stage.

9
Next, multiply 8 tens by 4 tens.
The answer is 32 hundreds.
Add the 2 hundreds that we carried over to make 34 hundreds. Write the 4 in the hundreds column and the 3 in the thousands column.

10Now we have multiplied all the digits on the top row by all the digits on the bottom row, we add the two lines on our answer together: $258+3440=3698$

Add the two lines in the answer together

So, $86 \times 43=3698$

More long multiplication

When we need to multiply a number that has more than two digits by a two-digit number, we can also use long multiplication. It may look trickier with such a large number, but all we need to do is use more steps.

Let's multiply 7242 by 23.

2
Start by writing the two numbers out like this, with digits that have the same place values lined up one above the other. Now we're going to multiply each of the digits on the top row by each of the digits on the bottom row, starting with the ones.

3
First, multiply the 2 ones by 3 ones.
The answer is 6 ones. On a new line, write 6 in the ones column.

4
Next, multiply 4 tens by 3 ones.
The answer is 12 tens, or 120 .
Write 2 in the tens column. The 1 stands for 1 hundred, so we carry it over into the hundreds column to add on at the next stage.

5
Now multiply 2 hundreds by 3 ones.
The answer is 6 hundreds. Add the 1 hundred that we carried over from the tens multiplication to make 7 hundreds. Write the 7 in the hundreds column.

$7242 \times 23=?$

Multiply

\times	HTh	TTh	Th	H T	\bigcirc	2 hundreds
			7	${ }^{1} 2<4$	2	by 3 ones
				2	3	The 1 carried over is added
				7 7\%	6	to the in . column

(e)
Next, multiply 7 thousands by 3 ones.
The answer is 21 thousands. Write 1 in the thousands column and 2 in the ten thousands column.

7
Now we're going to multiply all the digits on the top row by 2 tens and write the answers on a new line. When we multiply by the 2 tens, we're actually multiplying by 20 , which is 10 times 2 . So, first we put a 0 in the ones column on the new line as a place holder.

(8)
Next, we multiply each of the digits in the top row by the 2 tens, in the same way that we did when we multiplied the top row by 3 . The answer on the bottom line is 144840 .

9
Now we have multiplied all the digits on the top row by all the digits on the bottom row, we use column addition to add the two lines in our answer together: $21726+144840=166566$

So, $7242 \times 23=166566$

$7242 \times 23=166566$

Multiplying decimals

We can use long multiplication to multiply decimals. It might look tricky, but really it's just as simple as multiplying any other number. All we have to do is make sure we carefully line up the decimal point in the answer line with the decimal point in the question.

When multiplying with decimals, it helps to estimate the answer first, so you can see at the end if you've made a mistake.

Let's multiply 6.3 by 52.

2
First, write the number with the decimal number above the whole number. We don't need to line up the numbers according to their place values. Write a decimal point on a new line, below the decimal point in the question.

3
Now we're going to multiply each of the digits on the top row by each digit on the bottom row. Start by multiplying all the digits by 2 .

4
First, multiply 3 by 2 . The answer is 6 . Write 6 in the first column.

5Next, multiply 6 by 2 . The answer is 12 . Write 2 in the next column to the left of the decimal point, and 1 in the next column.

$6.3 \times 52=?$

(e)
Now we're going to multiply all the digits on the top row by 5 and write the answers on a new line. Write a decimal point on this new line, in line with the other decimal points.

7When we multiply by this 5 , we're actually multiplying by 50 , which is 10 times 5 . So, we put a 0 in the first column on the new line as a place holder.

8Now multiply 3 by 5 . The answer is 15 . Write the 5 in the column to the left of the decimal point. Carry the 1 into the next column to add on at the next stage.

9Next, multiply 6 by 5 . The answer is 30 . Add the 1 ten carried over from the previous step to make 31. Write 1 in the next available column and the 3 in the next column to the left.

10Now we have multiplied each of the digits on the top row by all of the digits on the bottom row, we add the two lines in our answer together:
$12.6+315.0=327.6$

Add the two lines in the answer together

We'll multiply each digit on the top row by 5
. Write a decimal point on a new line

The lattice method

There are several ways to do multiplication calculations, as you have seen. The lattice method, shown here, is very similar to long multiplication, but we write the numbers out in a grid instead of columns. We can use the lattice method for large whole numbers, and numbers with decimals.

The lattice method can be used for whole numbers and decimals.
-

Let's multiply 78 by 64 using
the lattice method.

3
The numbers in our calculation are both two digits long, so we draw a grid, or lattice, that is two boxes long and two boxes tall. Write the numbers in the calculation along the edges of the lattice. Now, draw a diagonal line through each box from the top right to the bottom left. The numbers that we are going to write along each diagonal will have the same place value.

4Next, multiply the digit at the top of each column by the digit at the end of each row. When we multiply 7 by 6 , the answer is 42 . Write 4 in the top of the box and 2 in the bottom of the box. We are separating the product into its tens and ones.

5Continue multiplying the numbers at the top of each column and the end of each row until all the boxes are filled.

$78 \times 64=?$

6
Starting from the bottom right corner, add the numbers along each diagonal. The first diagonal has just the number 2 , so we write 2 at the edge end of the diagonal.

7Now add the numbers in the second diagonal: $8+3+8=19$. Write 9 at the end of the diagonal and carry the 1 ten into the next diagonal to add on at the next stage.

8
Keep adding the numbers across each diagonal, until we reach the top left corner. We are left with the numbers $4,9,9$ and 2 . So, the answer is 4992 .

Read the answer from the top left to the bottom right

- So, $78 \times 64=4992$

$78 \times 64=4992$

Multiplying decimals using the lattice method

We can use the lattice method to multiply decimals, too. We just need to find where the decimal points meet.

Find where the

1Let's multiply 3.59 by 2.8 . First, write the two numbers along the edges of the lattice, including the decimal points. Work through the steps in the same way that we did with the whole numbers above.

2Next, look down from the decimal point at the top and along from the decimal point at the side and find where they meet inside the lattice.
decimal points meet

Follow the diagonal line from this point down to the bottom of the lattice and write the

- decimal point between the 8 two numbers at the end.

4 So, $3.59 \times 2.8=10.052$ point here

Division

Division is splitting a number into equal parts, or finding out how many times one number fits into another number. It doesn't always work out exactly. Sometimes there's a bit left over.

Division is sharing something out equally.

Division is sharing

When we divide something, like a number of apples, we share it out equally. Each part of a division calculation has its own special name.

Three robots have come to pick the 12 ripe apples on this tree. How many will each robot get? We need to divide!

Dividend
What we divide
? If we divide, or share out, the 12 apples equally between the 3 robots, each robot gets 4 apples. So, $12 \div 3=4$

One more apple

What happens if there are 13 apples, rather than 12 ? The 3 robots still get 4 apples each, but now there's 1 left over. We call the extra apple the remainder, and we put an " r " in front of it.

Division is the opposite of multiplication

If we know a multiplication fact, we can use it to find a division fact. This is because division is the opposite, or inverse, of multiplication. We can show this with our robots and apples.

1
The 3 robots are storing their apples. Each robot takes a basket of 4 apples and empties it into the barn. The total number of apples in the barn is 12 , because 4 multiplied by 3 is 12 .

$4 \times$

12 apples in the barn

$3=$

2The multiplication to store the apples $(4 \times 3=12)$ is the inverse of the division we did to share them out $(12 \div 3=4)$. The 3 stays where it is, but the other numbers change places. So, if you know the multiplication, you just rearrange the numbers to find the division, and vice versa.

Division is repeated subtraction

Division is also like taking away one number from another number again and again. We call this repeated subtraction. Let's see what happens when our robots start removing their apples from the barn.

Repeated subtraction is the inverse of repeated addition, which we looked at on page 99.

Dividing with multiples

We've already used number lines to add, subract, and multiply. We can also use them to see how many times one number (the divisor) fits into another (the dividend). The division is easier if you jump forward in multiples of the divisor.

1
Let's calculate $27 \div 3$. We'll start at 0 and make jumps of 2 groups of 3 each time. Each jump moves us 6 places.
2. Four jumps gets us to 24 . A last jump of 3 takes us to 27. We've jumped 9 groups of 3 in total, so that's the answer.

$$
27 \div 3=?
$$

$$
27 \div 3=9
$$

What about remainders?

Sometimes our jumps don't quite reach the target. In cases such as this, we're left with a remainder. Let's see what happens when we use a number line to divide 44 by 3 .

The bigger the multiples, the fewer steps you need.

The division grid

We can take the multiplication grid (see page 106) and use it as a division grid. The numbers in the middle are the dividends - the numbers we want to divide. Those along the top and down one side are the divisors and the quotients.

$\begin{aligned} & \text { Let's use our } \\ & \text { division grid to } \end{aligned}$	\times	1	2	3	4	5	6	7	8	9	10	11	12
			2	3	4	5	6	7	8	9	10	11	12
$56 \div 7=?$	2	2	4	6	8	10	12	14	16	18	20	22	24
First, we find the number we want to divide by. We go along the top blue row to 7 .	3	3	6	9	12	15	18	21	24	27	30	33	36
	4	4	8	12	16	20	24	28	32	36	40	44	48
	5	5	10	15	20	25	30	35	40	45	50	55	60
2 Next, we move . down the 7 column until we find the number we want to divide, which is 56 .	6	6	12	18	24	30	36	42	48	54	60	66	72
	7	7	14	21	28	35	42	49	56	63	70	77	84
		8	16	24	32	40	48	56	64	72	80	88	96
	9	9	18	27	36	45	54	63	72	81	90	99	108
\qquad Lastly, we move along the row from 56 until we reach 8 in the blue column on the left. This is the answer (quotient) to	10	10	20	30	40	50	60	70	80	90	100	110	120
	11	11	22	33	44	55	66	77	88	99	110	121	132
	12	12	24	36	48	60	72	84	96	108	120	132	144

5So, $56 \div 7=8$.
This is the inverse of $7 \times 8=56$.

$$
56 \div 7=8
$$

TRY IT OUT

Grid lock!

Use the grid to find the answers to these division calculations.
Answers on page 319

A bag of 54 marbles is shared between 9 children. How many does each child get?

Division tables

We can list division facts in tables just like we list multiplication facts in multiplication tables. Division tables are the opposite, or inverse, of multiplication tables. You can use these tables to help you with division calculations.

1 \div table					$2 \div$ table					$3 \div$ table				
1	\div	1	$=$	1	2	\div	2	=	1	3	\div	3	=	1
2	\div	1	=	2	4	\div	2	=	2	6	\div	3	=	2
3	\div	1	=	3	6	\div	2	=	3	9	\div	3	=	3
4	\div	1	=	4	8	\div	2	=	4	12	\div	3	=	4
5	\div	1	=	5	10	\div	2	=	5	15	\div	3	=	5
6	\div	1	=	6	12	\div	2	=	6	18	\div	3	=	6
7	\div	1	=	7	14	\div	2	=	7	21	\div	3	=	7
8	\div	1	=	8	16	\div	2	=	8	24	\div	3	=	8
9	\div	1	=	9	18	\div	2	=	9	27	\div	3	=	9
10	\div	1	=	10	20	\div	2	=	10	30	\div	3	=	10
11	\div	1	=	11	22	\div	2	=	11	33	\div	3	=	11
12	\div	1	=	12	24	\div	2	=	12	36	\div	3	=	12
		ta					ta					ta		
4	\div	4	=	1	5	\div	5	=	1	6	\div	6	=	1
8	\div	4	=	2	10	\div	5	=	2	12	\div	6	=	2
12	\div	4	=	3	15	\div	5	=	3	18	\div	6	=	3
16	\div	4	=	4	20	\div	5	=	4	24	\div	6	=	4
20	\div	4	=	5	25	\div	5	=	5	30	\div	6	=	5
24	\div	4	=	6	30	\div	5	=	6	36	\div	6	=	6
28	\div	4	=	7	35	\div	5	=	7	42	\div	6	=	7
32	\div	4	=	8	40	\div	5	=	8	48	\div	6	=	8
36	\div	4	=	9	45	\div	5	=	9	54	\div	6	=	9
40	\div	4	=	10	50	\div	5	=	10	60	\div	6	=	10
44	\div	4	=	11	55	\div	5	=	11	66	\div	6	$=$	11
48	\div	4		12	60		5		12	72	\div	6	$=$	12

TRY IT OUT

Tea-party teaser
Use the division tables to help you answer these tricky questions.

Answers on page 319

Imagine you have made 24 sandwiches for a tea-party. How many sandwiches will each person get if there are:
2 guests?
(2) 3 guests?
(4) 6 guests?
(5) 8 guests?
(3) 4 guests?
(6) 12 guests?

$8 \div$ table

$8 \div 8=1$
$16 \div 8=2$
$24 \div 8=3$
$32 \div 8=4$
$40 \div 8=5$
$48 \div 8=6$
$56 \div 8=7$
$64 \div 8=8$
$72 \div 8=9$
$80 \div 8=10$
$88 \div 8=11$
$96 \div 8=12$

9ㄷ table

$9 \div 9=1$
$18 \div 9=2$
$27 \div 9=3$
$36 \div 9=4$
$45 \div 9=5$
$54 \div 9=6$
$63 \div 9=7$
$72 \div 9=8$
$81 \div 9=9$
$90 \div 9=10$
$99 \div 9=11$
$108 \div 9=12$
$10 \div$ table
$10 \div 10=1$
$20 \div 10=2$
$30 \div 10=3$
$40 \div 10=4$
$50 \div 10=5$
$60 \div 10=6$
$70 \div 10=7$
$80 \div 10=8$
$90 \div 10=9$
$100 \div 10=10$
$110 \div 10=11$
$120 \div 10=12$

$11 \div$ table

$11 \div 11=1$
$22 \div 11=2$
$33 \div 11=3$
$44 \div 11=4$
$55 \div 11=5$
$66 \div 11=6$
$77 \div 11=7$
$88 \div 11=8$
$99 \div 11=9$
$110 \div 11=10$
$121 \div 11=11$
$132 \div 11=12$

$12 \div$ table

$12 \div 12=1$
$24 \div 12=2$
$36 \div 12=3$
$48 \div 12=4$
$60 \div 12=5$
$72 \div 12=6$
$84 \div 12=7$
$96 \div 12=8$
$108 \div 12=9$
$120 \div 12=10$
$132 \div 12=11$
$144 \div 12=12$

Dividing with factor pairs

You'll remember that a factor pair is two numbers that we multiply together to get another number (see pages 28 and 101). Factor pairs are just as useful in division as they are in multiplication.
FACTOR PARS OF 12
$1 \times 12=12$
$2 \times 6=12$
$3 \times 4=12$
$4 \times 3=12$
$6 \times 2=12$
$12 \times 1=12$

These are all the factor pairs of 12 . The inverse of each multiplication fact is a division fact of 12 . The multiplier of the factor pair becomes the divisor in the division fact.

DIVISION FACTS OF 12

$12 \div 12=1$	The multiplier of each factor pair is now the divisor
$12 \div 6=2$	
$12 \div 4=3$	
$12 \div 3=4$	
$12 \div 2=6$	
$12 \div 1=12$	

2If we divide 12 by one of the numbers from a factor pair, then the answer will be the other number in the pair. For example, $12 \div 3$ must be 4 , because 3 and 4 are a factor pair of 12 .

Factor pairs and multiples of 10

You can also use factor pairs when you are dividing with numbers that are multiples of 10 . The only thing that's different is the zeros - all the other digits are the same. Here are some examples.

$$
\begin{aligned}
& 120 \div 30=? \\
& 120 \div 30=4
\end{aligned}
$$

1Let's look at $120 \div 30$. The answer is 4 . You know that 3 and 4 are a factor pair of 12 , so 30 and 4 must be a factor pair of 120 .

$$
\begin{aligned}
& 120 \div 60=? \\
& 120 \div 60=2
\end{aligned}
$$

2What about $120 \div 60$? Since 6 and 2 are a factor pair of 12,60 and 2 must be a factor pair of 120 . So the answer is 2 .

$$
\begin{aligned}
& 150 \div 50=? \\
& 150 \div 50=3
\end{aligned}
$$

[^15]
Checking for divisibility

A simple calculation or an observation about a number will often tell you whether or not it can be divided exactly (without a remainder) by a whole number. The checks in the table below will help you with your division.

A number is divisible by	If ...	Examples
2	If the last digit is an even number	$8,12,56,134,5000$ are all divisible by 2
3	If the sum of all its digits is divisible by 3	$\begin{aligned} & 18 \\ & 1+8=9(9 \div 3=3) \end{aligned}$
4	If the number formed by the last two digits is divisible by 4	732 $32 \div 4=8$ (we can divide 32 by 4 without a remainder, so 732 is divisible by 4)
5	If the last digit is 0 or 5	$10,25,90,835,1260$ are all divisible by 5
6	If the number is even and the sum of all its digits is divisible by 3	$\begin{aligned} & 3426 \\ & 3+4+2+6=15(15 \div 3=5) \end{aligned}$
8	If the number formed by the last three digits is divisible by 8	75160 $160 \div 8=20$ (we can divide 160 by 8 without a remainder, so 75160 is divisible by 8)
9	If the sum of the digits is divisible by 9	6831 $6+8+3+1=18(18 \div 9=2)$
10	If the last digit is 0	10, 30, 150, 490, 10000 are all divisible by 10
12	If the number is divisible by 3 and 4	156 $156 \div 3=52$ and $156 \div 4=39$ (since 156 is divisible by 3 and 4 , it's also divisible by 12)

Dividing by 10,100 , and 1000

We can divide a number by 10,100 , or 1000 just by changing the place value of its digits.
Dividing by 10 is simple: you just shift the digits one place to the right on a place-value grid. By shifting the digits further to the right, you can also divide by 100 and 1000 .

2Dividing by 100 Now let's try dividing 6452 by 100. When we divide by 100 , each digit becomes 100 times smaller. To show this, we move each digit two places to the right. So, $6452 \div 100=64.52$

Dividing by 1000

Lastly, we'll divide 6452 by 1000. When we divide by 1000 , each digit becomes 1000 times smaller. To show this, we move each digit three places to the right. This means $6452 \div 1000=6.452$

Each digit shifts one place to the right

Each digit shifts two places to the right

1Dividing by 10
To test this method, let's divide 6452 by 10 . When we divide by 10 , each digit becomes 10 times smaller. To show this, we move each digit one place to the right. This shows that $6452 \div 10=645.2$

「 \ddots. Each digit shifts three places right

TRY IT OUT

Factory work

Can you use the "shift to the right" method to find the answers to these questions?

Answers on page 319

(1)A factory owner shares $£ 182540$ among 1000 workers. How much does each worker get?
(2) The factory made 455700 cars this year. That's 100 times more cars than it made 50 years ago. How many cars did it make then?

Dividing by multiples of 10

To split up a multiple of 10 for this kind of division, break the multiple into 10 and its other factor.

If your divisor (the number you're dividing by) is a multiple of 10 , you can split the calculation into two easier steps. For example, instead of dividing by 50 , you divide first by 10 and then by 5 .

This calculation asks how many times 30
fits into 6900. Although we're dividing a big number, it's not as difficult as it looks.

9Since 30 is a multiple of 10 , we can split the division. Dividing in stages by 10 and 3 is easier than dividing by 30 all at once.

First, we divide 6900 by 10. See page
136 (opposite) if you need help with this. The answer is 690 .

Next, we divide 690 by 3 .
The answer is 230.

So, $6900 \div 30=230$

$6900 \div 30=?$

$6900 \div 10=690$
$690 \div 3=230$
$6900 \div 30=230$

TRY IT OUT

Mind-boggling multiples

The divisors in these questions are multiples of 10 . Split up the multiples, then find the answers.

A class of 20 children has to deliver 860 leaflets to advertise the school craft fair. If they share the work equally, how many leaflets should each child take? sell at the fair. Each bracelet contains 40 beads. How many bracelets do they make with 1800 beads?

Partitioning for division

When you're dividing a number with two or more digits, it helps to break that number down, or partition it, into smaller numbers that are easier to work with.

How to partition

The first step in partitioning for division is to break the number we're dividing (the dividend) into two smaller numbers. It's often a good idea to break the dividend into a multiple of 10 and another number. Then we divide each of these two numbers by the number we're dividing by (the divisor).

Let's divide 147 by 7 using partitioning.

We're going to partition
147 into 140 and 7 .

3First, we divide 140 by 7. We know from the multiplication table for 7 that $7 \times 10=70$, so $7 \times 20=140$. This tells us that $140 \div 7=20$

4
Now we divide 7 by 7. That's easy! The answer is 1.

5
Now we simply add up the answers we got from dividing the parts separately: $20+1=21$

$$
147 \div 7=?
$$

- 147

$140 \div 7=20$

$$
20+1=21^{\begin{array}{l}
\text { Add up the two } \\
\text { quotients to give } \\
\text { you the answer }
\end{array}}
$$

$$
147 \div 7=21
$$

Including remainders

Sometimes, dividing by partitioning leaves us with remainders. But the method we've just seen still works - we simply have to include the remainders when we add up our answers (or quotients) at the end.

1Imagine you're going on holiday in 291 days and you want to know how many weeks you have to wait until the holiday begins. You know there are 7 days in a week, so you need to divide 291 by 7 to find out the number of weeks.

2Since we know from the multiplication table for 7 that $7 \times 4=28$, we also know that $7 \times 40=280$, which is very close to, but not more than, the dividend (291). Let's partition 291 into 280 and 11.

As we know that $7 \times 40=280$, we also know that $280 \div 7=40$

4
Now we divide 11 by 7. The answer is 1 remainder 4.

5Adding up our quotients and including the remainder gives the final answer 41 r 4 .

So, $291 \div 7=41 r 4$

$$
291 \div 7=41 r 4
$$

Expanded short division

Short division is a method we use when the number we are dividing by the divisor) has only one digit. To make the calculation easier, we use expanded short division. In this method, we subtract multiples, or "chunks", of the divisor.To try out expanded short division, let's divide 156 by 7 .

$$
156 \div 7=?
$$

2First, we write the number we want to divide (the dividend). In this case, it's 156 . We draw a division bracket (like an upturned "L") around it. We put the divisor, 7 , outside the bracket, to the left of 156 .

3
Now we're ready to begin dividing.
Expanded short division is just like repeated subtraction, but instead of taking away 7 repeatedly, we subtract much bigger chunks of the number each time. To start, we'll take away 70, which is 10 groups of 7 . So, we subtract 70 from 156, which leaves 86 .

We have 86 left over, so we can subtract another chunk of 70 from it. That leaves 16. We've now subtracted 20 groups of 7 from 156.

$86-70=16$ \qquad

Draw a line and write what's left over here, making sure you keep the place values lined up

| H | T | O |
| :--- | :--- | :--- | :--- |

71 5	
-	7

Division bracket

5Now we've only got 16 left from our original dividend of 156 . That number's too small to subtract another 70 , so we need to find the largest number of 7 s we can take away from 16. The answer's 2 of course, since $7 \times 2=14$

6Next, we take away 14 from 16. That leaves us with 2. We can't take any more 7s away from 2, so we've come to the end of our subtractions. The left-over 2 is the remainder.

7
The last step is to add up how many 7s we've taken away. That's why we wrote them down beside our calculation as we went along. So, $10+10+2=22$ groups of 7 . Write 22 above the bracket, then put " r 2 " beside it to show that 7 doesn't go into 156 exactly.

$$
156 \div 7=22 \mathrm{r} 2
$$

	2	${ }_{2}^{\circ}$	r2
$7 \longdiv { 1 }$	5	6	
-	7	0	17×10
	8	6	$(7 \times 10$
-	7	0	
	1	6	(7×2)
-	1	4	
		2	22

Add up how many 7s we've subtracted

TRY IT OUT

Expand your skills

Try using expanded short division to do these division calculations.

Answers on page 319
(1) $196 \div 6=$?

Start by subtracting 30 groups of 6 .
(2) $234 \div 5=$?

If you work with bigger chunks, you'll be able to do the division with fewer subtractions.

Short division

Short division is another method for working out division calculations on paper when the divisor is a single-digit number. Compared with expanded short division (see pages 140-41), you have to do more calculation in your head and less writing down.Let's divide 156 by 7 using short division.

2
Write out the calculation like this.

Now we're going to divide each of the digits in the dividend, 156, by 7 . We'll start with the first digit, which is 1 .

4
Since 1 can't be divided by 7, we write nothing over the 1 above the division bracket. We carry over this 1 into the tens column. This carried over 1 stands for 1 hundred, which is the same as 10 tens.

5
Because we carried over the 1 from the hundreds column, we don't divide 5 by 7 , instead we divide 15 by 7 . We know that $7 \times 2=14$, so there are two 7 s in 15 with 1 left over. Write the 2 above the division bracket in the tens column, and carry over the remaining 1 to the ones column. This 1 stands for 1 ten, or 10 ones.

6Now look at the ones column.
Because we carried over the 1 from the tens column, we divide 16 by 7 . There are two 7 s in 16 with 2 leff over. Write the 2 above the division bracket in the ones column, and write the remainder next to it.

7
So, $156 \div 7=22 \mathrm{r} 2$.

$156 \div 7=22 \mathrm{r} 2$

TRY IT OUT

Test your skills

Glob has been busy sorting out screws into piles of different colours. Now she needs to divide each pile into groups, ready for use. Can you use short division to help her work out how many groups she can make with each pile?

Answers on page 319

In the pink group, there are 279 screws, and Glob needs to divide these into groups of 9 .

2
There are 286 blue screws, and she needs groups of 4 .

There are 584 yellow screws, and she needs groups of 6 .

4There are 193 green screws, and she needs groups of 7 .

Expanded long division

When the number we are dividing by (the divisor) has more than one digit, we use a method of calculation called long division. Here, we look at expanded long division. There's also a shorter version just called long division (see pages 146-47).

To see what expanded long division is like, we'll divide 4728 by 34 .

$$
4728 \div 34=?
$$

2Before we begin dividing, we write down the number we want to divide, the dividend, which is 4728 . Then we draw a division bracket around it. We put the divisor, 34 , outside the bracket, to the left of 4728 .

3
Now we're all set to start dividing. Just as we did with expanded short division, we'll take away big chunks of the number each time. The easiest big chunk to take away is 100 groups of 34 , which is 3400. When we subtract 3400 from 4728, we're left with 1328 . We write the number of 34 s on the right.

4We can't subtract another 3400 from 1328, so we'll need to use a smaller chunk. Fifty groups of 34 would be 1700 . Forty groups would be 1360 . Both numbers are too large. What about 30 groups of 34 ? That gives us 1020. Let's subtract 1020 from 1328, which leaves us with 308 .

You may find it useful to label the columns to show place values
how many 34s we subtracted.

Draw a line and write what's left over here, keeping digits with the same place values lined up

	Th	H	T	\bigcirc	lined up
34	4	7	2	8	
-	3	4	0	0	(34×100)
	1	3	2	8	
-	1	0	2	0	(34×30)
		3	0	8	$\begin{aligned} & \text {....Record a } \\ & 30 \text { grou } \end{aligned}$

5We've got 308 left from our original dividend of 4728 . That's not quite enough to take away a chunk of 10 34 s , which would be 340 . But we can subtract nine 34 s , which is 306 .

6When we take away 306 from 308, we're left with 2 . We can't take any more 34s away, so that's the end of our subtractions. The 2 is our remainder.

There is a remainder of $2 \ldots \ldots$

7Finally, let's add up how many 34s we took away, which we listed beside our calculation as we went along. So, $100+30+9=139$ groups of 34 . Write 139 above the bracket, then put "r2" beside it to show that 34 goes into 4728 139 times with a remainder of 2.

So, $4728 \div 34=139 \mathrm{r} 2$

> Write the total number of 34 s here

$$
4728 \div 34=139 r 2
$$

TRY IT OUT

A fishy problem!

A fisherman catches 6495 fish. He sells them to 43 fish shops, giving each shop the same amount. Any fish left over he gives to his cats.

Can you use expanded long division to work out how many fish each shop gets?

Long division

In expanded long division (see pages 144-45), we divide by subtracting multiples of the divisor in chunks. Long division is a different method, in which we divide each digit of the number we're dividing (the dividend) in turn.To see how long division works, we'll divide 4728 by 34 .

$$
4728 \div 34=?
$$

2We start by writing the number we want to divide, which is 4728 . Then we draw a division bracket around it. We put the divisor, 34 , outside the bracket, immediately to the left of 4728.

3Now we try to divide the first digit of the dividend by 34.34 won't go into 4, so we look to the next digit and divide 47 by 34 . The answer is 1 . Write 1 above the bracket, over the 7 . Write 34 beneath 47. Subtract 34 from 47 to find the remainder, which is 13 . Write this in at the bottom.

You may find it useful to label the columns to show the place values

34	Th			0	Write down how many 34 s go into 47 here
	4	7	2	8	
-	3	4			Draw a line and write the total of the subtraction beneath it
	1	3			

We now bring down the next digit in the dividend to sit next to the 13 we just wrote down, to change the number 13 into 132.

5Now divide 132 by 34. Let's split 34 into tens and ones (30 and 4) to make this easier. We know that 30×3 is 90 , and 4×3 is 12 , so $3 \times 34=102$. Write a 3 on the bracket above the 2. Write 102 beneath 132 . Subtract 102 from 132 to find the remainder, which is 30 .

So, $4728 \div 34=139$ r2

$$
4728 \div 34=139 r 2
$$

Converting remainders

We can convert the remainder in the answer to a division calculation into either a decimal or a fraction.

Converting remainders into decimals

If the answer to a division calculation has a remainder, we can convert that into a decimal by simply adding a decimal point to the dividend and continuing with the calculation.

When you write your answer above the division bracket, line up the decimal point with the decimal point below the bracket.

Let's divide 75 by 6 using expanded short division and convert the remainder into a decimal.

2
Start by writing out the calculation like this.

3First, divide the first digit in the dividend, 7 , by 6 . As 6 can go into 7 only once, write 1 above the 7 on the division bracket, in the tens column. Write the 6 beneath the 7, then subtract this 6 from 7 to get your remainder, which is 1 .

Now we move on to the second digit in the dividend which is 5 . Bring this down to sit next to the 1 at the bottom of the calculation. Divide 15 by 6 . We know $6 \times 2=12$, so write 2 on the division bracket in the ones column. Write 12 beneath 15 and subtract 12 from 15 . The answer is 3 . This is the remainder.

$$
75 \div 6=?
$$

Abstract

5To turn this remainder 3 into a decimal, continue calculating. Place a decimal point at the end of the dividend and put a zero next to it. Add another decimal point above the division bracket, with a tenths column to the right. Bring down the new zero in the dividend to sit by the remainder 3 . Now divide 30 by 6 . We know that $6 \times 5=30$, so the answer is 5 . Write this on the division bracket in the tenths column.

(e)
As there's no remainder, we can end our calculation here. So, $75 \div 6=12.5$

$$
75 \div 6=12.5
$$

Converting remainders into fractions

It's simple to convert remainders into fractions. First, we carry out the division calculation. To turn the remainder into a fraction, we simply write the remainder as the numerator in the fraction and the divisor as the denominator.

1Here, expanded short division has been used to divide 20 by 8 . The answer is 2 r 4 .

denominator in the fraction So, the remainder is $4 / 8$. We know that
$4 / 8$ is the same as $2 / 4$, which is the same
$1 / 2$, so we can use the fraction $1 / 2$ instead. So, the remainder is $4 / 8$. We know that
$4 / 8$ is the same as $2 / 4$, which is the same
$1 / 2$, so we can use the fraction $1 / 2$ instead. So, the remainder is $4 / 8$. We know that
$4 / 8$ is the same as $2 / 4$, which is the same
as $1 / 2$, so we can use the fraction $1 / 2$ instead.

3So, $20 \div 8=21 / 2$. We can tell that our remainder is correct, because we know

$$
r 4=\frac{4}{8}=\frac{2}{4}=\frac{1}{2}
$$

2
that half of 8 is 4 , so a remainder of 4 can be written as $1 / 2$.

Dividing with decimals

Dividing a number by a decimal number or dividing a decimal number is simple if you know how to divide whole numbers and how to multiply numbers by multiples of 10 (see pages 108-109).

Dividing by a decimal

When a divisor (the number you're dividing by) is a decimal number, first multiply it by 10 as many times as it takes to give you a whole number. You also have to multiply the dividend (the number being divided) by 10 the same number of times. Then do the division calculation and the answer will be the same as it would if you did the calculation without multiplying first.

Multiply both the dividend and divisor by 10 until the decimal number you're working with

$$
536 \div 0.8=?
$$

2First, multiply both the divisor and the dividend by 10. Then 536 becomes 5360 and, 0.8 becomes 8 .

$$
\begin{aligned}
& 536 \times 10=5360 \\
& 0.8 \times 10=8
\end{aligned}
$$

3Now carry out a division calculation. We can see from the completed calculation shown here that $5360 \div 8=670$

4
So, the answer to both $536 \div 0.8$ and

$536 \div 0.8=670$ and $5360 \div 8=670$

Dividing a decimal

If it is the dividend (the number being divided) that is the decimal number, simply carry out the calculation as you would if there were no decimal point there. Make sure you write the decimal point into the answer in the correct place - directly above the one in the dividend.

Let's divide 1.24 by 4.

$1.24 \div 4=$?

2
Because the divisor (the number we are dividing by) is greater than the dividend, we know the answer will be less than 1 . Write out the calculation with a division bracket. Now we can begin calculating.

3As 4 won't go into 1, write a zero on the division bracket above the 1 and a decimal point next to it. Now we look to the next digit in the dividend and divide 12 by 4 . We know that $4 \times 3=12$, so we write the 3 on the bracket above the 2 , after the decimal point. Write the 1.2 beneath the 1.2 in the dividend. Subtract 1.2 from 1.2, which gives us 0 .

Now carry down the final digit in the dividend, which is 4 , to sit next to the 0 at the bottom of the calculation.

> 5Next, divide 4 by 4. The answer is 1 . Write 1 on the division bracket above the 4 in the hundredths column. There's no remainder, so the calculation ends at this point.

So, $1.24 \div 4=0.31$

The order of operations

Some calculations are more complex than just two numbers with one operation. Sometimes we need to carry out calculations where there are several different operations to do. It's very important that we know which order to do them in so that we get the answer right.

BODMAS

We can remember the order that we should do calculations by learning the word "BODMAS" (or "BIDMAS"). It stands for brackets, orders (or indices), division, multiplication, addition, and subtraction. We should always work out calculations in this order, even if they are ordered differently when the calculation is written down.

$4 \times(2+3)=20$

Brackets

Look at this calculation. Two of the numbers are inside a pair of brackets. Brackets tell us that we must work out that part first. So, first we must find the sum of $2+3$, then multiply 4 by that sum to find the total.

$$
6+4 \div 2=8
$$

Division

We work out division and multiplication calculations next. In this example, even though the division is written after the addition, we divide first. So, $4 \div 2=2$ and then $6+2=8$

$9 \div 3+12=15$

Addition

Finally, we do any addition and subtraction calculations. Look at this calculation. We know that we do division before addition, so: $9 \div 3+12=3+12=15$

$5+2 \times \mathbf{3}^{\mathbf{2}}=23$

๑)

Orders (or indices)

Powers or square roots are known as orders or indices. We looked at these types of numbers on pages 36-39. We work these out after brackets. Here, we first work out 3^{2} is 9 , then $2 \times 9=18$, and finally add 5 to get 23 .

$$
8 \div 2 \times 3=12
$$

Multiplication

Division and multiplication are of equal importance, so we work them out from left to right through a calculation. Look at this example. We divide first, then multiply: $8 \div 2 \times 3=4 \times 3=12$

$10-3+4=11$

(6)

Subtraction

Addition and subtraction are of equal importance, like multiplication and division, so we work them out from left to right. Here, we subtract first, then add: $10-3+4=7+4=11$

Using BODMAS

If you can remember BODMAS, even calculations that look really tough are straightforward.

1
Let's give this tricky calculation a go.

We know that we need to work out the brackets first, so we need to add 4 and 6, which equals 10 . We can now write the calculation as: $17-10 \div 2+36$

3
There are no orders in this calculation, so we divide next: $10 \div 2=5$. So, now we can write the calculation as: $17-5+36$

4
Now we can work from left to right and work out the addition and subtraction calculations one by one. Subtracting 5 from 17 gives 12 . Finally, we add 36 to 12 to give 48 .

So, $17-(4+6) \div 2+36=48$

$17-(4+6) \div 2+36=?$

$$
17-10 \div 2+36=?
$$

$$
17-5+36=?
$$

$$
12+36=48
$$

$17-(4+6) \div 2+36=48$

TRY IT OUT

Follow the order

Now it's up to you. Use the order of operations and see if you can work out

$$
\text { (1) } 12+16 \div 4+(3 \times 7)=\text { ? }
$$

$$
\text { (2) } 4^{2}-5-(12 \div 4)+9=\text { ? }
$$ the correct answers to these calculations.

$$
\text { (3) } 6 \times 9+13-22 \div 11=\text { ? }
$$

BODMAS stands for:

Brackets

Orders
Division
Multiplication
Addition
Subtraction

Arithmetic laws

Whenever we're calculating, it helps to remember three basic rules called the arithmetic laws. These are especially useful when we're working on a calculation with several parts.

The commutative law

When we add or multiply two numbers, it doesn't matter which order we do it in - the answer will be the same. This is called the commutative law.

1

Addition

Look at these fish. Adding 6 to 5 gives 11 fish. Adding 5 to 6 also gives 11 fish. We can add numbers in any order and still get the same total.

The associative law
When we add or multiply three or more numbers, the way we group the numbers doesn't affect the result. This is the associative law.

Addition

The associative law helps us to add together tricky numbers, like $136+47$.

We can partition 47 into $40+7$.
If we work out this calculation, the answer is 183 .

$136+47$

$$
136+(40+7)=183
$$

$(136+40)+7=183$

The distributive law

Multiplying a number by some numbers added together will give the same answer as multiplying each number separately. We call this the distributive law.Let's see how the distributive law can help us to find 3×14.

When a calculation has numbers in brackets, work out the part in the brackets first. We looked at the order of operations on pages 152-53.

$$
3 \times 14=\text { ? }
$$

$$
3 \times(10+4)=?
$$ our multiplication tables for 3 all the way to 14 , so let's split 14 into $10+4$, which is easier to work with.

3
Next, we can make the calculation simpler to work out by distributing the number 3 to each of the numbers in the brackets.

4
Now we can solve the two brackets before adding them together:
$(3 \times 10)+(3 \times 4)=30+12=42$

5
So, by breaking 14 into simpler numbers and distributing the 3 between them,

$$
30+12=42
$$

$$
(3 \times 10)+(3 \times 4)=?
$$

we've found that $3 \times 14=42$

$$
3 \times 14=42
$$

Multiplication

The associative law is also helpful when we need to multiply by a tricky number, like 6×15.

We can break 15 into its factors 5 and 3 . If we then work out this calculation, the answer is 90 .

3The associative law allows us to move the brackets to make it easier. If we find 6×5 before multiplying by 3 , the answer is still 90 .

$$
6 \times 15=?
$$

$$
6 \times(5 \times 3)=90
$$

$$
(6 \times 5) \times 3=90
$$

Using a calculator

A calculator is a machine that can help us to work out the answers to calculations. It's important that we know how to do calculations in our heads and with written methods, but sometimes using a calculator can make calculating quicker and easier.

Always double-check your answer when you are using a calculator, because it's easy to make a mistake by accidentally pressing the wrong keys.

Calculator keys

Most calculators have the same basic keys, just like this one. To use a calculator, we simply type in the calculation we want to work out, then press the [=] key. Let's take a look at what each key does.

T

ON and CLEAR key

This is the key we press to turn the calculator on or to clear the display, taking the value displayed back to zero.

2Number keys
The main part of the calculator's keypad are the numbers 0 to 9. We use these keys to enter the numbers in a calculation. \qquad

Decimal point key

We press this key if we are calculating with a decimal number. To enter 4.9, we press [4], then the decimal point [.], followed by [9].

4
Negative key
This key changes a positive number into a negative number, or a negative number into a positive number.

The display shows the numbers that have been typed in or the answer

TRY IT OUT

Calculator questions

Now that you know all of the important keys on the calculator and how to use them, see if you can work out the answers to these questions using a calculator.

Answers on page 319

Memory keys

Sometimes it can be useful to get a calculator to remember an answer, so that we can come back to it later. [$M+$] adds a number to the calculator's memory and [$M-$] removes that number. [MR] uses the number that is stored in the memory, without us needing to key it in and [MC] clears the memory.

7
 Square root key
 This key tells us the square root of a number. We use this in more advanced mathematics.

Percentage key

The [\%] key can be used to work out percentages. It works a little differently on some calculators compared with others.

Equals key
This key is the "equals" key. When we have entered a calculation on the keypad, for example 14×27, we press [=] to reveal the answer on the calculator's display.

$$
\begin{aligned}
& \text { (1) } 983+528=\text { ? (4) } 39 \times 64=\text { ? } \\
& \text { (2) } 7.61-4.92=\text { ? } 5697 \div 41=\text { ? } \\
& \text { (3) }-53+21=\text { ? (6 } 40 \% \text { of } 600=\text { ? }
\end{aligned}
$$

Estimating answers

When you use a calculator, it's easy to make mistakes by pressing the wrong keys. One way you can make sure your answer is right is to estimate what the answer should be. We looked at estimating on pages 24-25.

$$
307 \times 49=?
$$

Let's estimate the answer to 307×49

$300 \times 50=?$

It's quite tricky to work out in our heads so we can round the numbers up or down. Round 307 down to 300 , and round 49 up to 50.

$300 \times 50=15000$

300×50 gives the answer 15000 , so the answer to 307×49 will be close to 15000 .

4If we used the calculator to find 307×49 and got the answer 1813, then we would know it's incorrect and that we missed a number when keying it in. This is because estimating told us that the answer should be close to 15000 .

bxh

Length

Length is the distance between two points. We can measure distances in metric units called millimetres (mm), centimetres (cm), metres (m), and kilometres (km).

Metres and kilometres

We can use lots of different words to describe lengths, but they all mean the distance between two points.

1Height means how far something is from the ground. But it's really no different from length, so we measure it in the same units. This tall building has a height of 700 m .

2The width of something is a measure of how far it is from side to side. It's also a type of length. The width of this building is 250 m .

Another unit of length is the kilometre. There are 1000 m in 1 km . The helicopter is flying at a height of 1 km . We can convert the height of the helicopter into metres by multiplying by 1000. So, the helicopter is 1000 m off the ground.

5
Another word we use for length is "distance", which means how far one place is from another. Long distances are measured in kilometres.

Length, width, height, and distance are all measured using the same units.
-

Centimetres and millimetres

Metres and kilometres are great for measuring big things but less useful for measuring things that are much smaller. We can use units called centimetres and millimetres to measure shorter lengths.

1
There are 100 cm in 1 m and 10 mm in 1 cm .

2
Take a look at this dog. It's 60 cm tall.

3We can easily change this height into m, by dividing it by 100 . So, the dog is 0.6 m tall.

4We can even change this height into mm , by multiplying it by 10 . This means the dog is 600 mm tall.

5
We usually use mm to measure much smaller things, like the bumblebee buzzing beside the dog. The bumblebee is 15 mm long.

Converting units of length

Length units are easy to convert. All we need to do is multiply or divide by 10,100 , or 1000.

5000 mm

500 cm

1
To convert mm to cm , we divide by 10 . To convert cm to mm , we multiply by 10 .

- To convert cm to m , we divide by 100 . To convert m to cm , we multiply by 100 .

[^16]
Calculating with length

Calculations with length measurements work just like other calculations. You simply add, subtract, multiply, and divide the numbers as you would usually.

Calculating with the same units

1This tree is 16.6 m tall. Four years ago, it was 15.4 m tall. How much has it grown?

2
To find the difference in height, we need to subtract the smaller number from the larger number: $16.6-15.4=1.2$

3
This means that the tree has grown 1.2 m in four years.

4Let's try a trickier problem. We know the tree has grown 1.2 m over four years, but how much is that per year?

So, the tree grew 0.3 m each year. amount it has grown by the number of years: $1.2 \div 4=0.3$

TRY IT OUT

Share the distance

This running track is 200 m long. If the four robots each ran the same distance in a relay race, how far will each robot need to run to cover the whole track?

Answer on page 319

(1)To figure out the answer, all you need to do is a simple division calculation.

Just divide the length of the track by the number of robots sharing the distance.

Calculating with mixed units

We already know we can use different units to record length. If you are calculating with lengths, it is really important to make sure the values are all in the same unit before you start calculating.

1The robot in this picture is going to leave his house and travel 760 m to the toy shop, 1.2 km to the playground, and then 630 m to the zoo. How far is the total journey?

2First, we have to put all the measurements into the same units. So, we need to change the distance between the toy shop and the playground from kilometres to metres.

When calculating with distances, make sure the measurements are all in the same unit.

3Remember, to convert kilometres to metres, we just multiply the number of kilometres by 1000, because 1 km is the same as 1000 m :
$1.2 \times 1000=1200$

4Now we can add all the distances together because they are all in metres:
$760+1200+630=2590$

52590 is quite a large number, so converting it back into kilometres will make it a more sensible number. To do this, we just need to divide by 1000: $2590 \div 1000=2.59$

Perimeter

Perimeter means the distance around the edge of a closed shape. If you imagine the shape is a field surrounded by a fence, the perimeter is the length of the fence.

The perimeter of a shape is the sum of the lengths of all its sides.

1To find the perimeter of a shape, we need to measure the length of each side and add them all together.

3Look at this tennis court. We can find the perimeter by adding up the length of each side: $11+24+11+24=70$

2We measure perimeter using the same units as we use to measure length. It is important that the sides are in the same unit when we add them all together.
4
This means that the perimeter of the tennis court is 70 m .

TRY IT OUT

Unusual shapes

We measure the perimeter of an unusual shape in the same way as a rectangle - just find the sum of all the sides. Can you add up the sides of these two shapes to find their perimeter?

What if we don't know the lengths of all the sides?

Sometimes we don't know the lengths of all the sides of a shape. If a shape made up of one or more rectangles has a measurement missing, we can still figure out the missing length and the perimeter.

Look at this field. We need to find the perimeter but the length of one side is missing.

2
The field's corners are right angles, so its opposite sides are parallel to each other. That means if we know the length of one side, we can work out the length of the unknown part of the opposite side.

3
Let's find the missing length. The opposite side is 12 m long, so the two sides facing it must also have a total length of 12 m .

4To find the missing length, we just need to subtract 9 from 12: $12-9=3$. So, the length of the missing side is 3 m .

5Now we can work out the total perimeter by adding up the lengths of all the sides: $12+6+9+5+3+11=46$

This means that the perimeter of the field is 46 m .

Using formulas to find perimeter

If we remember some basic facts about 2D shapes, we can use formulas to find their perimeters. These formulas use letters to represent the lengths of the sides. This makes it easier for us to remember how to calculate the perimeters of lots of different shapes.

Square

1We know that all four sides of a square are the same length. We can find the perimeter by adding those four sides together.

2Look at this red square. If we call the length of each side " a ", we can say Perimeter $=a+a+a+a$. A simpler way of writing this is:

Perimeter of
 a square $=4 a$

3
Let's imagine that the square's four sides were each 2 cm long. The perimeter would be 8 cm , because $4 \times 2=8$

Rectangle
b

1
A rectangle has two pairs of opposite sides that are parallel and equal in length. Let's call the length in one pair "a" and the length in the other pair "b".

2
For a rectangle, we can add up the two lengths that are different then multiply by two, because there are two sides of each length. We use the formula:

Perimeter of
 a rectangle $=\mathbf{2}(a+b)$

3
So, if the rectangle's sides were 2 cm and 4 cm long, the perimeter would be 12 cm , because $2(4+2)=12$

Parallelogram
a

1Just like a rectangle, a parallelogram has two pairs of opposite sides that are parallel and equal in length.

2
So, we can use the same formula for a parallelogram as for a rectangle, adding the two adjacent side lengths together then multiplying by two:

Perimeter of a parallelogram $=2(a+b)$

3This means that if the sides were 3 cm and 5 cm , the perimeter would be 16 cm , because $2(5+3)=16$

Using perimeter to find a missing measurement
If we know the perimeter of a shape and all of its side lengths except one, we can work out the length of the missing side with a simple subtraction calculation.

Perimeter $=57 \mathrm{~m}$
$\stackrel{\bullet}{\bullet} \cdot \cdots \cdots$ Perimeter $=57 m$ T
Look at this triangle. We know its perimeter and the lengths of two sides. Let's find the length of the unknown side.
? We can find the length of the unknown side by simply subtracting the lengths that we know from the perimeter: $57-23-12=22$

[^17]Equilateral triangle

1We know that an equilateral triangle has three sides that are all the same length.

2Like we do with a square, we just need to multiply the length of one side by the number of sides. If we call the length " a ", the formula we can use is:

> Perimeter of an equilateral $=3 a$ triangle

3Let's imagine the three sides were each 4 cm long. The perimeter would be 12 cm , because $3 \times 4=12$

Isosceles triangle

- An isosceles triangle has two sides that are equal in length and one side that is different.
? Let's call each of the two sides that are the same " a ". To find the perimeter, we multiply "a" by two then add the length of the other side, "b":

```
Perimeter of
an isosceles =2a+b
    triangle
```

3So, if the two sides that are equal in length were 4 cm and the different side was 3 cm , the perimeter would be 11 cm .

Scalene triangle

- A scalene triangle has three sides that are all different lengths.

2
If we call the three sides " a ", "b", and "c", we can find the perimeter by adding the three lengths together. We can use the formula:

Perimeter of a scalene $=a+b+c$ triangle

3
So, if the triangle's sides were $4 \mathrm{~cm}, 5 \mathrm{~cm}$, and 6 cm , then the perimeter would be 15 cm , because $4+5+6=15$

Area

The amount of space enclosed by any 2D shape is called its area. We measure area using units called square units, which are based on the units we use for length.

We can find the area of a rectangle by dividing it into squares and counting the number of squares.

1
Look at this patch of grass. It is 1 m long and 1 m wide. We call it a square metre, and we write it like this: $1 \mathrm{~m}^{2}$.

2 m

3
As the garden fills up, we can see that two squares will fit along its width and three along its length.

4In total, we can fit exactly six $1 \mathrm{~m}^{2}$ patches into the garden. We can say it has an area of $6 \mathrm{~m}^{2}$.

TRY IT OUT

Unusual areas

We can also use square units to work out the areas of more complicated shapes. Can you work out the areas of these shapes by counting the number of square centimetres in each one?

2

Answers on page 319

Estimating area

Finding the areas of shapes that are not squares or rectangles may seem tricky. But we can combine the number of completely full squares and partly full squares to estimate the area.

3
First, we count all the squares that are completely filled with water by colouring them in. There are 18 full squares.

Count the squares that are completely filled with water

Ignore the squares that aren't completely filled

7So, the area of the pond is approximately $31 \mathrm{~m}^{2}$.

Drawing a square grid over an unusual shape can help us to find its estimated area.

Working out area with a formula

Using a formula is a much easier way to find a shape's area than having to count squares. Calculating with a formula means you can find the area of large shapes more quickly.

The area of a square or rectangle is: length \times width

Look at this playground. We know that it has a width of 6 m and a length of 8 m .

2
If we put a square grid over the playground, we would see eight rows of six $1 \mathrm{~m}^{2}$ units, making a total area of $48 \mathrm{~m}^{2}$.

3There is a quicker way to find the area than counting squares. We can use a formula.

4If we multiply 6 by 8 , we get 48 . This is the same number as the number of metre squares we can fit into the playground.

We can write this as a formula that will work for any rectangle, including squares:

$$
\text { Area }=\text { length } \times \text { width }
$$

TRY IT OUT

See for yourself

The sandpit in the playground is 4 m long and 2 m wide.
Can you use the formula to find the area of the sandpit?

Area and missing measurements

Sometimes we know the length of one side of a rectangle and its area, but the length of the other side is unknown. To find the missing length, we simply need to use the numbers that we know in a division calculation.

1
To find a missing side length when we know the area, we just need to divide the area by the side length we do know.

2This bedroom has an area of $30 \mathrm{~m}^{2}$, and we know that it is 5 m wide. Let's figure out the length of the room.

3To find the length, we divide the area by the width: $30 \div 5=6$

4
This means that the room has a length of 6 m .

TRY IT OUT

Mystery length

Now you know how to find a missing length, see if you can do it yourself. This rug has an area of $6 \mathrm{~m}^{2}$, and it is 2 m wide. How long is the rug?

When you know the area of a rectangle and the length of one side, you can find the length of the other side by dividing the area by the length you know.
Answer on page 319

Areas of triangles

Squares and rectangles aren't the only shapes with a handy formula to help us work out their area. We can also use formulas to find the areas of other shapes, including triangles.

The area of any triangle is: $1 / 2$ base \times height

-

Right-angled trianglesLook at this right-angled triangle. We're going to use a formula to work out its area.

BASE OF TRIANGLE

2We can turn the triangle into a rectangle by adding a second identical triangle. So, the triangle takes up exactly half the rectangle's area.

3We already know that the area of a rectangle is: width \times length. Here, the width of the rectangle is equal to the base of the triangle, and the length is equal to its height.

4We also know the triangle has half the area of the rectangle, so we can write a formula for the area of a triangle like this:

Area of a triangle $=1 / 2$ base \times height

Other triangles

This scalene triangle looks a little trickier to turn into a rectangle.

2 First, draw a straight line down from the top vertex to the base to make it into two rightangled triangles.

3Now, it's easy to turn these two triangles into rectangles like we did before. This triangle takes up half the area, too. So, the formula is the same:

Area of a triangle $=1 / 2$ base \times height

Areas of parallelograms

Parallelograms aren't too different from rectangles - they're quadrilaterals with opposite sides that are parallel and equal
 in length. Because parallelograms are so like rectangles, we can use the same formula to work out their areas.

1
Look at this parallelogram. Let's see why its area formula is the same as that of a rectangle.

2First, let's draw a line straight down from the top corner of the parallelogram to its base. It creates a right-angled triangle.

Draw a straight

 line to make a triangle

4

5

When you stick the triangle on the other end, it fits perfectly and makes the parallelogram into a rectangle.

This means that we can find the area by multiplying the height of the parallelogram by the length of the base, just like we did with the rectangle:

Area of a parallelogram $=$ base \times height

Areas of complex shapes

Sometimes you will be asked to find areas of shapes that look very complicated. Breaking these shapes into more familiar ones, like rectangles, makes finding the area much easier.

4To find the area of the second rectangle, we first need to work out its length by adding 4 and 18 to get 22 . Then we can multiply the lengths of the sides:
$22 \times 6=132 \mathrm{~m}^{2}$

7
So, the area of the swimming pool is $358 \mathrm{~m}^{2}$.

22 m

> For the final section, we simply need to multiply the lengths of the sides to find its area: $22 \times 7=154 \mathrm{~m}^{2}$

All we need to do now is to get the pool's total area: $72+132+154=358$

TRY IT OUT

How big is

 this room?Now you know how to work out the area of a complex shape, can you find the total area of the floor of this room?

Once you've broken the shape up, you'll need to do some addition or subtraction to find some of the measurements you'll need.

Comparing area and perimeter

We know how to find the area and perimeter of shapes, but how are they related? If two shapes have the same area, they don't always have the same perimeter. This is true the other way round, too.

Same area but different perimeter

Look at these three zoo enclosures. They all have the same area $-240 \mathrm{~m}^{2}$. Does this mean that they all have the same perimeter too?

1If we look at the zebra enclosure, we can see that it has a perimeter of 62 m .

2The perimeter of the penguin enclosure is 64 m . This is greater than the perimeter of the zebra enclosure, even though the area is the same.

3The tortoise enclosure has an even greater perimeter. Its perimeter is 68 m .

4It's important to remember that even if shapes have the same area, they may not have the same perimeter.

Same perimeter but different area

Now look at these two enclosures. They both have a perimeter of 80 m . Does this mean that they have the same area too?

1
If we multiply the lengths of the sides of the leopard enclosure, we can see that its area is $375 \mathrm{~m}^{2}$.

Perimeter $=80 \mathrm{~m}$
Area $=375 \mathrm{~m}^{2}$

2The area of the crocodile enclosure is $400 \mathrm{~m}^{2}$. This is greater than the leopard enclosure, even though they both have the same perimeter.

3So, we can see that shapes with the same perimeter don't always have the same area.

Perimeter $=80 \mathrm{~m}$ Area $=400 \mathrm{~m}^{2}$

Why aren't they the same?

When we change the measurements of a shape, why don't the perimeter and area change by the same amount? Perimeter is a measure of the length around the edge of a shape. Area is a measure of the space enclosed by the perimeter. This means that when we change one, the other isn't affected in the same way.

1Take a look at this rectangle. If we keep the perimeter the same, but make it 1 cm longer and take 1 cm off the width, you might think the area would stay the same.

2What's happened to the area and the perimeter? When we changed the shape, we removed $10 \mathrm{~cm}^{2}$ from the bottom, but replaced it with only $3 \mathrm{~cm}^{2}$ on the side.

[^18]

Capacity

The amount of space inside a container is called its capacity. It is often used to describe how much liquid can be held in a container such as a water bottle. The capacity of a container is the maximum amount it can hold.

Converting litres and millilitres

Converting between litres and millilitres is easy. To convert litres to millilitres, we multiply by 1000. To go from millilitres to litres, we divide by 1000.

$$
\begin{aligned}
& \text { Litres to millilitres } \\
& \times 1000
\end{aligned}
$$

To convert 5 l to millilitres, we multiply 5 by 1000. This gives the answer 5000 ml .

[^19]

Volume

Volume is a measure of how big something is in three dimensions. Liquid volume is similar to capacity and is also measured in millilitres and litres. Adding and subtracting liquid volumes works just like other calculations.

Volume is $101 \ldots \ldots \ldots$

1Look at the fish tank again. We know that it has a capacity of 50 l , but it is now holding some water. The volume of the water is 10 l .

2If a robot pours another 301 of water into the tank, what will the volume of the water be now?

Volume is 401 To work out this sum, we simply have to add the two amounts together: $10+30=40$

4This means that the volume of the water in the tank is now 40 l .

3

Calculating with mixed units
Sometimes you will have to do calculations using a mixture of different units. The easiest way to do this is to convert the units so that they are all the same.

This bottle of juice has a volume of 1.51 . If you drink 300 ml of the juice, how much will be left in the bottle?

2Changing the units of one of the amounts makes the calculation easier. Remember, to change litres to millilitres we multiply by 1000 .

Let's change the bottle's volume to millilitres:

$1.5 \times 1000=1500$	1500
	1250
Now the calculation	1000
i is simpler:	750
$1500-300=1200$	500
	250

The volumes of solids

The volumes of 3D shapes are usually measured using units called cubic units. Cubic units are based on units of length, and they include cubic centimetres and cubic metres.

1Look at this sugar cube. Each side of the cube is 1 cm long, so we call it a cubic centimetre or $1 \mathrm{~cm}^{3}$.

2If each side was 1 mm long, the volume would be $1 \mathrm{~mm}^{3}$. If the sides were 1 m long, it would be $1 \mathrm{~m}^{3}$.

3Now look at this box. We can work out its volume by filling it with cubic centimetres.

$$
5_{\mathrm{ge}}^{\mathrm{g}}
$$

$8 \mathrm{~cm}^{3}$.
 If we keep going until the box is full, we find the box holds 24 cubic centimetres. In other words, its volume is $24 \mathrm{~cm}^{3}$.

TRY IT OUT

Unusual shapes

You can use the method we've just learned to find the volume of all sorts of shapes, not just regular ones. Count the cubic centimetres to work out the volume of each of these three shapes.

Answers on page 319

Working out volume with a formula

There is an easier way to work out the volumes of simple shapes like cuboids without having to count cubes. Instead, we can use a formula, calculating the number of units rather than counting them.

The volume of a cube or cuboid is: length \times width \times height
-

\uparrow
The volume of a cuboid can be written like this:

Volume of a cuboid = length x width x height

2Let's work out the volume of this cereal packet.

First, we multiply the length by the width: $24 \times 8=192$

4Next, we multiply the result by the height: $192 \times 30=5760$

5This means that the volume of the packet is $5760 \mathrm{~cm}^{3}$.

TRY IT OUT

Small things in big packages
This robot is going to cram a cardboard box full of $1 \mathrm{~cm}^{3}$ dice. The box has a volume of $1 \mathrm{~m}^{3}$. Can you work out how many dice will fit in the box using the formula? You might be surprised! Before you start your calculation, remember to convert the dimensions of the box into centimetres.

4 tonnes

Mass

Mass is the amount of matter, or material, contained within an object. We can measure mass using metric units called milligrams (mg), grams (g), kilograms (kg), and tonnes.

Tonnes
Tonnes are used to measure very heavy things. This whale has a mass of 4 tonnes. 1 tonne is the same as 1000 kg .

1
Milligrams
We measure very light
 things in milligrams. The mass of this ant is 7 mg .

2
Grams
This frog has a mass of 5 g . There are 1000 mg
 in 1 g .1 g is about the mass of a paperclip.

3

Kilograms

The mass of this big cat is 8 kg . There are 1000 g in 1 kg .

Converting units of mass
Units of mass are easy to convert. We just have to multiply or divide by 1000 to switch between units.

Mass and weight

We often use the word weight when we mean mass but they're not actually the same. Weight is how hard the force of gravity attracts an object and is measured in a special unit called Newtons (N).

Mass is the amount of matter something is made up of. Weight is the amount of gravity acting on something.

1If you were to travel around the Universe, your weight would change depending on where you were. This is because the gravity that acts on you is different in different places.

2
Even though your weight would be different, your mass would stay the same. This is because your mass is the amount of matter you are made up of, so it doesn't change.

5In outer space, there is no gravity, so even though our astronaut has no weight, she still has the same mass as she would have on Earth.

6The astronaut would weigh more than twice as much on Jupiter compared to Earth because Jupiter's gravity is much stronger than Earth's. She would feel very heavy, but her mass would remain the same.

Calculating with mass

We can do calculations with mass in the same way that we do with lengths and other measurements. As long as the masses are in the same units, we can simply add, subtract, multiply, or divide them.

Calculating mass with the same units

Look at these three parrots. If we add
their masses together, what is their
total mass?

2
To work this out, we simply need to add the three masses together: $85+73+94=252$

73
3
So, the parrots have a total mass of 252 g .

Comparing mass with mixed units

When you're tackling a problem that involves mass, it's important to pay attention to the units. If the masses are not all in the same unit, you'll need to start by doing some conversion. We looked at converting masses on page 182.

Look at these three animals.
Can you put them in order, from the heaviest to the lightest?

2
It might seem tricky at first because their masses are not in the same unit. To make it easier, we're going to do a conversion.

3Let's change the parrot's mass into kilograms so that all the masses are in the same unit - kilograms.

TRY IT OUT

Weighing it up

Subtracting with mass is just as easy as adding. Can you calculate how much heavier the yellow toucan is than the green toucan? All you need to do is subtract the smaller mass from the larger mass.

Answer on page 319

4To change 85 g to kilograms, we just divide by 1000 : $85 \div 1000=0.085 \mathrm{~kg}$

5Now it's much clearer which order the animals go in, and we can order the numbers from largest to smallest.

The tiger has the largest mass of 130 kg , the snake has the next largest at 35 kg , and the parrot is the smallest at just 0.085 kg .

TRY IT OUT

Convert and calculate

Can you work out the total mass of this group of gibbons? Remember to take a careful look at the units.

First, you should convert the masses of the gibbons into the same unit.

2
Then, you simply add up their masses.

Temperature

Temperature is a measure of how hot or cold something is.
We measure it using a thermometer and can record it in units called degrees Celsius $\left({ }^{\circ} \mathrm{C}\right.$) or degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$. You might also hear degrees Celsius called degrees centigrade.

Calculating with temperature

We can do addition and subtraction with temperatures measured in degrees Celsius and Fahrenheit, although we can't do multiplication or division.

The scale on a thermometer works just like the scale on a number line.

1The temperature at the base of this mountain is $30^{\circ} \mathrm{C}$. It's $40^{\circ} \mathrm{C}$ colder at the top of the mountain. Let's work out what the temperature is at the top.

5We can also work out the temperature change by drawing a number line just like this one.

To find the answer, we simply need to do a subtraction calculation. We know that the result will be a negative number because 40 is a larger number than 30.

Let's subtract 40 from 30:
$30-40=-10$

4So, the temperature at the top of the mountain is $-10^{\circ} \mathrm{C}$.

2

Start at 30° and count back in 10s

TRY IT OUT

World weather

In Sweden, the average temperature in February is $-3^{\circ} \mathrm{C}$. If it's $29^{\circ} \mathrm{C}$ hotter in India, what is the temperature?

Sweden
$-3^{\circ} \mathrm{C}$ in India, what is the temperature?

Imperial units

We've looked at the units we use to measure things in the metric system. In some countries, a different system is used to measure. It's called the imperial system, and it's useful to be aware of the different units that make up the system.

The imperial system

Each unit in the imperial system is very different to the next, because they have been inspired by different things over thousands of years.

Mass
Just as with the metric system, there is a range of different units we can use in the imperial system to measure mass, such as ounces, pounds, and imperial tons.

2In the imperial system, we use units called pounds to weigh things like this dog.

The dog has a mass of 55 pounds.

REAL WORLD MATHS

Mars mix-up

In 1999, NASA made a very expensive mistake with units. Their $\$ 125$ million Mars Climate Orbiter was lost because someone didn't do the right conversions! One team had been working in metric units, while the other worked in imperial units. As a result, the probe flew too close to Mars. It was lost, and probably destroyed, as it entered the planet's atmosphere.

Length

The imperial units for length and distance are called inches, feet, yards, and miles.This tall building is 760 yards tall and is 1 mile away from the dog.

7Measuring in metric units, we can say the building is about 690 metres tall and is 1.6 kilometres away from the dog.

8
 Volume and capacity

There are two imperial units commonly used for volume and capacity: pints and gallons. This pond has a volume of 480 pints or 60 gallons. This is roughly the same as 270 litres.

Converting between the imperial and metric systems
We have learned about converting measurements within the metric system, but we can also convert between imperial and metric units. It works both ways, and all we need is a number called a conversion factor.

7Let's convert 26 metres into feet. All we need to do is multiply each 1 metre by its value in feet. We call this value the conversion factor.

2
1 m is equal to 3.3 ft , so the conversion factor we use to change metres to feet is 3.3 .

Now we multiply 26 by the conversion factor: $26 \times 3.3=85.8$

So, 26 m is the same as 85.8 ft .

$26 \mathrm{~m}=$? ft
$26 \times 3.3=85.8$
$26 \mathrm{~m}=85.8 \mathrm{ft}$

Imperial units of length, volume, and mass

Just like the metric system, the imperial system has many different units that we can use to measure length, volume and capacity, and mass. We looked at how this system compares with the metric system on pages 188-89.

Length

1
Length can be measured in imperial units called inches, feet, yards, and miles.

2
Look at this cat. We can measure its height in inches. The cat is 12 inches tall.

3There are 12 inches in 1 foot, so we can also say that the cat is 1 foot tall.

4Yards are used to measure longer distances. There are 3 feet in 1 yard, so the cat is $1 / 3$ yard tall.

5Miles are usually used to measure even longer distances, like the distance between two towns. There are 1760 yards in 1 mile.

Volume and capacity

Volume and capacity can be measured in imperial units called pints and gallons. We can also use cubic imperial units, such as cubic inches and cubic feet. We looked at cubic units on pages 180-181.

2Look at this fish tank. We can measure its capacity in pints. The capacity is 88 pints.

3We can also measure capacity in an imperial unit called gallons. There are 8 pints in 1 gallon, so we usually use this unit to measure larger containers or volumes of liquid.

4We could say the fish tank has a capacity of 11 gallons.

Mass

1
We can measure the mass of very light things in an imperial unit called ounces. This bird has a mass of 3 ounces.

2We can also use pounds to measure mass. This big cat has a mass of 18 pounds. There are 16 ounces in 1 pound.

3The imperial ton is used to measure very heavy things. There are 2240 pounds in 1 imperial ton. This elephant has a mass of 3 imperial tons. A very similar unit is used in the metric system, called tonnes or metric tons. It has a slightly different mass to the imperial ton.

LENGTH

1 inch $=2.54$ centimetres	1 centimetre $=0.39$ inch
1 foot $=0.30$ metres	1 metre $=3.28$ feet
1 yard $=0.91$ metre	1 metre $=1.09$ yards
1 mile $=1.61$ kilometres	1 kilometre $=0.62$ mile

VOLUME AND CAPACITY

1 pint $=0.57$ litre	1 litre $=1.76$ pints
1 gallon $=4.55$ litres	1 litre $=0.22$ gallons

MASS

1 ounce $=28.35$ grams
1 pound $=0.45$ kilogram
1 imperial ton $=1.02$ tonnes

1 gram $=0.04$ ounce
1 kilogram $=2.20$ pounds
1 tonne $=0.98$ imperial ton

Telling the time

We measure the passage of time to organise our everyday lives. Sometimes we need to know how long something takes, or we need to be in a certain place at a particular time. We use seconds, minutes, hours, days, weeks, months, and years to measure time.

If we're writing the time using the 12-hour clock, we write arm. or p.m. to show whether it's morning or afternoon.

Clocks

1Look at this clock. The numbers around the edge help us measure which hour of the day it is. There are 24 hours in a day - 12 in the morning and 12 in the evening.

2The shortest hand on the clock is the hour hand. It points to which hour of the day it is.

3The marks around the edge of the clock tell us the minutes of an hour. There are 60 minutes in one hour. \qquad

The hands

 rotate in this direction, called clockwise
Reading the time

We describe the time by saying which hour of the day it is and how many minutes of that hour have passed. We can describe the number of minutes past the hour that's just gone, or how many minutes it is to the next hour.

On the hour

When the minute hand is pointing to 12 , the time is on the hour. We use the word "o'clock". This clock is showing 8 o'clock.

The minute hand is halfway round the clock, so it is half past the hour

There are

Quarter past an hour

 We can split hours into quarters. When the minute hand points to 3 , we say it's quarter past the hour. This clock is showing quarter past ten.

5

Quarter to an hour
Here the minute hand is pointing to 9 . Instead of saying it is three-quarters past, we say it's quarter to the next hour. The time on this clock is quarter to seven.

5 minutes have gone by since 4 o'clock

Minutes past an hour

We ususally describe other times in multiples of 5 , instead of being very precise. The time on this clock is 5 past 4. That means it's 5 minutes after 4 o'clock.

Minutes to an hour

When the minute hand goes past the number 6 , we say how many minutes it is until the next hour. This clock is showing 10 to 5 .

Converting

 seconds, minutes, hours, and days

Dates

As well as seconds, minutes, and hours, we can measure time in units called days, weeks, months, and years. We use these units to measure periods of time that are longer than 24 hours.

One year is 365 days long, except on a leap year when there are 366 days.

Days

There are 24 hours in a day. A day is the length of time it takes for Earth to spin once on its axis.

3

Months

There are between 28 and 31 days in a month. Months may have come from the lunar calendar at first, but have changed over time. Not all months have the same number of days.

One week is one-quarter of the time between one full Moon and the next

Weeks
 Days are grouped into a unit of time called weeks. There are 7 days in a week. This might be because it's a quarter of the cycle of the Moon (the time between one full Moon and the next).

4

Years

There are 365 days in a year. This is the same as 52 weeks or 12 months. A year is the length of time it takes for Earth to orbit the Sun once.

How long is a month?
To help us calculate with time, it's useful to know how many days there are in each month. Most of the months of the year have 30 or 31 days. February usually has 28 days, except in a leap year, when there are 29.

Look at these knuckles. The first 7 knuckles and the dips between them are labelled with a month.

[^20][^21]
Calendars

We use calendars to arrange all the days in a year into months and weeks. They help us to measure and keep track of the passing of time.

This January begins on a Friday and ends on a Sunday.

January						
M	T	w	T	F	s	s
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

February will begin on a Monday.	"February						
	M	T	w	「	F	5	s
	1	2	3	4	5	6	7
	8	9	10	11	12	13	14

Look at this calendar showing the month of January.

2The 365 days in a year don't fit neatly into a perfect number of weeks or months, so the day of the week that a month begins and ends on changes each year.

> Here, January starts on a Friday and ends on a Sunday. This means that the previous month, December, ended on a Thursday and the next month, February, will begin on a Monday.

4In following years, January will begin and end on different days of the week.

5
 When we want to refer to a specific day in the year, or date, we say the number of the day

 in the calendar, followed by the month and year.(0)So, we can refer to the last day in January on this calendar as Sunday 31 January.

Converting days, weeks, months, and years
There are 7 days in a week and 12 months in 1 year, so converting these units of time can be quite tricky. Converting days or weeks to months is much harder, because the number of days and weeks in each month varies.

2To convert 48 months to years, we divide by 12 , which gives 4 years. To convert back the other way, we just multiply by 12 . This takes us back to 48 months.

Calculating with time

It's simple to add, subtract, multiply, or divide an amount of time. As with other measurements, we just need to make sure the numbers are in the same units.

Calculating time with the same units

If times are measured in the same units, it's easy to add and subtract them. But when we count on from a start time, we have to remember to count up to the nearest minute, hour, or day and then add on any remaining time.

1It's 2.50 p.m. A robot is going to go on the big wheel, then walk to the exit of the fairground. Let's calculate what time it will be when the robot gets to the exit.

2First, we need to add up the time for each part of the journey. The queue for the big wheel is 8 minutes long, the ride lasts 6 minutes, and it takes 2 minutes to walk to the fairground exit. Let's add these times up: $8+6+2=16$

3Next, we add on minutes to 2.50 p.m. to take us to the next hour. Adding 10 minutes to 2.50 p.m. takes it to 3 p.m.

4Finally, we add on the 6 minutes that are left over, taking the time to 6 minutes past 3 .

> So, the robot reaches the exit of the fairground at 3.06 p.m.

Comparing time with mixed units

Sometimes we're asked to calculate times that are in a mixture of units. We need to be careful to make sure the numbers are in the same unit before we start calculating.

1
Look at the times of these
three flights from New York. Let's compare the duration of each journey and work out which is the shortest flight.

2It's difficult to see which is shortest when the time for each journey is in a different unit. Let's convert them all into hours to make it simpler to work out.

3The flight to Buenos Aires is already in hours, so we start by converting the duration of the flight to Dubai. There are 24 hours in a day, so we multiply 0.5 days by 24: $0.5 \times 24=12$. So, the journey from New York to Dubai takes 12 hours.

4Next, we convert the time taken for the Paris flight into hours. We work this out by dividing by 60 , because there are 60 minutes in an hour: $480 \div 60=8$. So, it takes 8 hours to fly from New York to Paris.

5We have worked out that it takes 8 hours to reach Paris, 11 hours to reach Buenos Aires, and 12 hours to reach Dubai from New York. So, the journey to Paris is shortest.

TRY IT OUT

Working with time

These robots are watching a film that is two and a half hours long. They have watched 80 minutes. How many minutes of the film are left?

First, convert the length of the film into minutes.

2
Now all you need to do is subtract the number of minutes watched from the total length of the film.

Money

Understanding money helps us to work out how expensive things are and check our change when we go shopping. Lots of systems of money (called currencies) are used around the world. In the UK, we use currency called pounds and pence.

T
 Let's look at the items in this shop and see how the prices have been written.

We write a "£" sign in front of an amount in pounds or a " p " after amounts in pence.$£ 1$ is equal to 100 p. We call pounds a decimal currency, and we can think of amounts as decimal fractions.

4
We don't write $£$ and p together. If an amount is more than 99p, we just write the amount in pounds. The pence can be written as a decimal fraction of a pound.
 pence is written $£ 1.46$.

So, fifty-nine pence is written 59 p.

Converting units of money

Converting between pounds and pence is simple, because there are 100 p in $£ 1$. To convert pence to pounds, we divide by 100. To convert pounds to pence, we multiply by 100 .

To convert 275 p to pounds, we divide 275 by 100. This gives the answer $£ 2.75$.

Using money

In the UK, our money is made up of eight different coins (1p, 2p, 5p, 10p, 20p, 50p, $£ 1$, and $£ 2$) and four different notes ($£ 5, £ 10, £ 20$, and $£ 50$). We can mix them and swap them to make any amount of money we like.

[^22]We could combine other amounts to get the same total: $50 \mathrm{p}, 50 \mathrm{p}$, $10 p, 10 p, 5 p, 1 p$, and $1 p$.

We could even make $£ 1.27$ out of 127 lp coins! There are many different combinations we can use.
If we were in a shop, we could also pay with more than $£ 1.27$ and receive change. For example, we could pay with a $£ 2$ coin and receive 73 p change.

REAL WORLD MATHS

Ancient money

Throughout history, people have used all sorts of things as money, like cowrie shells, elephant tail hairs, feathers, and whale teeth, because they were considered to be valuable.

We can combine notes with coins to make different amounts.

Calculating with money

We calculate with money in just the same way as we calculate with decimal numbers. We can learn to do this in our heads, using what we know about numbers, or use written methods, like column addition (see pages 86-87) and column subtraction (see pages 96-97).

Adding amounts of money

7Let’s add $£ 26.49$ and $£ 34.63$ using column addition. We looked at how

$$
£ 26.49+£ 34.63=\text { ? }
$$

Abstract

to do column addition on pages 86-87.

2
First, we write one number above the other number.
Line up the decimal points, and put another decimal point lined up below in the answer line.

3
Next, we work from right to left, adding each of the digits. The answer is $£ 61.12$

Line up the decimal points

So, $£ 26.49+£ 34.63=£ 61.12$

$£ 26.49+£ 34.63=£ 67.12$

Round it up

Another way we can calculate with money is by rounding up or down. Prices are often close to a whole number of pounds, so it's simpler to round the amount up to work out the rough total. Then we just have to adjust the answer at the end. Remember, $£ 1$ is equal to 100 p.

Let’s add $£ 39.98$ and $£ 45.99$
by rounding both numbers up to the nearest whole pound.

First, we add 2 p to $£ 39.98$ to get
$£ 40$ and add $1 p$ to $£ 45.99$ to get £46. So, we've added a total of 3 p.

> Next, we add the two amounts together: $£ 40+£ 46=£ 86$

4
Finally, we just have to subtract the $3 p$ that we added on at the start: $£ 86-3 p=£ 85.97$

So, $£ 39.98+£ 45.99=£ 85.97$

$$
\begin{aligned}
& £ 39.98+£ 45.99=? \\
& £ 40+£ 46=? \\
& £ 40+£ 46=£ 86 \\
& £ 86-3 p=£ 85.97
\end{aligned}
$$

$£ 39.98+£ 45.99=£ 85.97$

Giving change

When we're paying for things, it's useful to be able to work out how much change were owed. All we need to do is find the difference between the price of the items and the amount we paid. We do this by counting up. If the amounts aren't all in the same unit, well need to start by doing a conversion.

1
Look at these animals. Let's work out how much change we would get if we paid for three hamsters and one rabbit with a $£ 10$ note.

2First, we need to find the total cost of the animals in pounds. We know 80 p is the same as $£ 0.80$, so: $(0.80 \times 3)+2.70=2.40+2.70=5.10$. The animals cost $£ 5.10$ in total.

Now, we add these two amounts together:
$£ 4+90 p=£ 4.90$

So, the change we get from buying the animals with a $£ 10$ note is $£ 4.90$.

> Now we can work out the change from $£ 10$. First, add on pence to take us to the nearest pound. Adding 90 p to $£ 5.10$ takes us to $£ 6$. Next, we add on pounds to take us up to $£ 10$. Adding $£ 4$ takes the total to $£ 10$.

TRY IT OUT

Calculate the cost

Can you work out the total cost in pounds of all these items?
Remember to convert the amounts so they are all in the same unit.

In geometry, we study lines, angles, shapes, symmetry, and space. We can see plenty of geometric patterns in nature, such as the shapes of crystals and the symmetry of snowflakes. Geometry also has many other uses in everyday life - for example, we use it to navigate on journeys and to design and build structures such as bridges and buildings.

What is a line?

A line joins two points together. In geometry, lines can be either straight or curved. A line has a length that you can measure, but it has no thickness.

We call lines one-dimensional. They have length but no thickness.

Look at the straight line between A and B. It shows us the shortest distance between the two points.

2The curved line bends round the trees, making the line between A and B longer than the straight line.

Prove it!

This map shows three possible routes between points A and B. Here is an easy way to prove that the straight line between the two is the shortest route.

1Route 1 is a straight path. Stretch a piece of string from Point A to Point B along the path. Make a mark on the string where it reaches Point B.

2Now do the same for Route 2, and mark where the string reaches Point B. The new mark is further along the string, so Route 2 must be longer than Route 1 .

[^23]
Horizontal and vertical lines

We give lines different names to describe things about them, such as their direction or how they relate to other lines. Horizontal lines are level and go from side to side, while vertical lines go straight up and down.

τA horizontal line goes from side to side, like the wings of this plane. It is parallel (level) with the horizon.

2The struts that join the wings are vertical. They go up and down, and they're at right angles to the horizon.

3There are more vertical and horizontal lines in the picture. See how many you can spot.

Horizon

REAL WORLD MATHS

Horizontal or not?

A horizontal line is completely level. Some things need to be horizontal, such as bookshelves or the layers of bricks in the wall of a house. If a road has even a very gentle slope, a car would roll down to the bottom, unless we remembered to put the handbrake on!

Diagonal lines

A straight line that slants is called a diagonal line. A diagonal line is not vertical or horizontal. Another name for a diagonal line is an oblique line.

Straight lines can be horizontal, vertical, or diagonal.
-

1
Look at this picture of a zip
wire. It is made of horizontal, vertical, and diagonal lines.

Diagonals inside shapes

In geometry, the word diagonal has another, more exact meaning. A diagonal is a straight line inside a shape. It joins two corners that are not next to each other.

Here are some examples of a diagonal inside a shape. We have shown one diagonal on each shape.

The more sides a shape has, the more diagonals it will have.

2
Diagonal lines can slope gently, like the zip wire in the picture.

TRY IT OUT

Make a pattern with diagonals

Draw a regular hexagon (six-sided shape) or trace this one. Then use a ruler and pencil to draw diagonals from each corner to the other corners. This picture has three diagonals drawn for you, in white. When you have drawn all the lines, how many diagonals can you count inside the shape? Turn to page 320 to check your finished picture, then colour it in to make a pattern.

3
Diagonal lines can also slope a lot, like the ladder up to the zip wire.

4
Diagonal lines can slope in either direction, like the zip wire and the ladder.

[^24]
Parallel lines

When two or more lines are exactly the same distance from each other all along their lengths, they are called parallel lines.

You can't have just one parallel line. They always come in sets of two or more.
-

Parallel lines

These ski tracks are parallel. No matter how long you make the lines, they will never meet, or intersect.

2Non-parallel lines
These tracks are not parallel. You can see that they are not the same distance from each other all along their lengths. If the tracks carried on, they would meet at one end.

3
 Curved parallel lines

Parallel lines can be wavy like these tracks, or zig-zag. What matters is that they are always the same distance apart, or equidistant, and never meet.

Parallel lines would never meet,

TRY IT OUT

Are they parallel?

Look at this scene. It's made up of several sets of parallel and non-parallel lines. Can you spot them all?

Answer on page 320

The meeting point is where the two nonparallel lines would meet if they carried on

5Parallel lines don't just come in pairs - more than two lines can be parallel to each other. Parallel lines don't have to be the same length either.

6Lines that join up to make circles can also be parallel, like these circles with the same centre, called "concentric" circles.

2D shapes

2D shapes are flat, like the shapes we draw on paper or on a computer screen. 2D is short for twodimensional, because the shapes have length and height, or length and width, but no thickness.

Polygons and non-polygons

Describing a polygon

We usually mark the sides of a polygon with dashes to show which sides are the same length as each other.

All sides are marked with one dash to show they are equal

Regular and irregular polygons

A polygon is a 2D shape made of straight sides. Regular polygons have sides that are all the same length and angles of equal size. Irregular polygons have sides of different lengths and different-sized angles.

Triangle

A regular triangle has a special name - an equilateral triangle. Different irregular triangles also have special names. Find out more on page 215.

2
Quadrilateral
Quadrilaterals are foursided shapes. A regular quadrilateral is called a square.

Hexagon

A six-sided polygon is called a hexagon.

All six sides are the same length, and the angles are equal

Regular quadrilateral

All three sides are different lengths, and the angles are different sizes

Irregular triangle

The sides can be different lengths

Irregular quadrilateral

Irregular hexagon

TRY IT OUT

Odd one out

Only one of these five-sided polygons is a regular polygon, with sides of the same length and equalsized angles. Can you spot it?

Answer on page 320

1

2

3

Triangles

A triangle is a type of polygon. It has three sides, three vertices, and three angles.

A triangle is a polygon with three straight sides and three angles.
-

Parts of a triangle

In geometry, we give special names to different parts of a triangle.

Side

The three straight lines that make up the triangle are called sides.

Vertex
A corner of a triangle, where two lines meet, is a vertex. The word for more than one

Congruent triangles

Two or more triangles that have sides the same length and angles the same size are called congruent triangles. These triangles face different directions but are still congruent.

All the triangles are the same size and shape

Types of triangles

We give triangles different names depending on the lengths of their sides and the sizes of their angles. On pages 240-41, you'll find out more about the angles in triangles.

TRY IT OUT

Triangle test

This picture contains different kinds of triangles. Can you spot an equilateral, an isosceles, a scalene, and a right-angled triangle?

Answers on page 320

Quadrilaterals

A quadrilateral is a polygon with four straight sides, four vertices, and four angles. "Quad" comes from the Latin word for "four".

Quadrilaterals always have straight sides. You can't have

Types of quadrilaterals

Here are some of the most common quadrilaterals.

Opposite sides are marked with dashes to show they are the same length

Parallelogram

A parallelogram has two sets of parallel sides. Its opposite sides and opposite angles are equal.

Rhombus

A rhombus has four sides of equal length. Its opposite sides are parallel, and its opposite angles are equal.

Sides that are parallel are marked with the same arrow symbols

9

Rectangle

The opposite sides of a rectangle are the same length and are parallel to each other. Each of its four angles is a right angle.

Square

A square has four sides of equal length. Each of its four angles is a right angle. The opposite sides of a square are parallel.

5Trapezium
A trapezium has one pair of parallel sides. It is also called a trapezoid.

The non-parallel sides are the same length

Isosceles trapezium

This shape is like a normal trapezium, except that the non-parallel sides are the same length.

TRY IT OUT

Skewed shapes

Look at the square and the rhombus below. The rhombus looks like a skewed version of the square, as if it has been pushed sideways. Now look at the rectangle. If you skewed it in the same way, what shape would you get?

Square

Rectangle

Rhombus

Answer on page 320

Naming polygons

Polygons are named for the number of sides and angles they have. Most polygons' names come from the Greek words for different numbers. Here are some of the most common polygons.

Regular quadrilateral

Regular octagon

Regular dodecagon

Regular icosagon

Circles

A circle is a 2D shape, made from a curved line that goes all the way round a point at the centre. Every point on the line is the same distance from the centre.

The distance from the centre to any point on a circle's circumference is always the same.

Parts of a circle

This drawing shows the most important parts of a circle.
Some of these parts have special names that we don't

1
Circumference
The distance all the way round the circle. It's the circle's perimeter.

4Arc
Any part of the circle's circumference is called an arc.

7
Chord
A line between two points on the circle's circumference that doesn't go through the centre.

The diameter divides a circle in half

2

Radius

A straight line from the centre of the circle to the circumference. The plural of "radius" is "radii".

5

Sector

A slice of the circle formed by two radii and an arc.

Diameter

A straight line from one side of the circle to the other, going through the centre. The diameter is twice the length of the radius.

Area
 The amount of space inside the circle's circumference.

8
Segment
The space between a chord and an arc.

Tangent
A straight line that touches the circumference at one point.

Use a ruler to measure the diameter .

TRY IT OUT

Measure the circumference

A ruler won't help us measure a circle's circumference - it can't measure curves! But luckily, we can find the circumference of any circle if we multiply its diameter by 3.14 .

First, measure the diameter of this wheel, then multiply the diameter by 3.14 to work out the circumference.

2
Now put some string round the circumference, then measure the string with a ruler. Do you get the same answer?

3D shapes

Three-dimensional, or 3D shapes, are shapes that have length, width, and height. A 3D object can be solid, like a lump of rock, or hollow, like a football.

All 3D shapes have three dimensions: length, width, and height. A 2D shape only has length and width or length and height.

1
Look at this picture of a greenhouse. It's made up of flat surfaces, joins, and corners. In geometry, these are called faces, edges, and vertices.

This shape has seven faces

Face
The surface of a 3D object is made of 2D shapes called faces. Faces can be flat or curved.

Edge
An edge is formed when two or more faces of a 3D shape meet.

4

Vertex

The point where two or more edges meet is called a vertex. The plural of "vertex" is "vertices".

TRY IT OUT

Find the faces

Can you count the number of faces, edges, and vertices on this 3D shape?

Answers on page 320

REAL WORLD MATHS

It's a 3D world

Anything that has length, width, and height is 3D. Even a thin object, like a sheet of paper that's less than 1 mm thick, has some height, so it's 3D, too. A complicated shape, like this plant in a pot, is also 3D, even though it's tricky to measure its different dimensions.

Types of 3D shape

3D objects can be any shape or size, but there are some that you will come across often in geometry. Let's take a closer look at some of the most common 3D shapes.

Sphere

A sphere is a round solid. It has one surface and no edges or vertices. Every point on the surface is the same distance from the sphere's centre.

5
Triangular-based pyramid
A triangular-based pyramid is also called a tetrahedron. It has four faces, four vertices, and six edges. It's unusual to see this kind of pyramid in the real world.

The flat faces of two hemispheres can be put together to make a sphere :

2
Hemisphere
A hemisphere is the name for half a sphere. It has one flat surface and one curved face.

(-)

Cone

A cone has a circular base and a curved surface, which ends at a point directly above the centre of its base.

3

Cuboid

A cuboid is a box-like shape with six faces, eight vertices, and 12 edges. Its opposite faces are identical.

7

Cylinder

A cylinder has two identical circular ends joined by one curved surface.

Most 3 D shapes are made of faces, edges, and vertices, except the sphere - it has no edges or vertices.

Cube
A cube is a special kind of cuboid. It also has six faces, eight vertices, and 12 edges, but all its edges are the same length and all its faces are square.

Square-based pyramid
A square-based pyramid sits on a square face. The other faces are triangles. It has five vertices and eight edges.

Regular polyhedrons

A regular polyhedron is a 3D shape with faces that are regular polygons of the same shape and size. In geometry, there are only five regular polyhedrons. They are called the Platonic solids, after the Ancient Greek mathematician Plato.

Cube
6 faces
8 vertices
12 edges
Faces are squares

Octahedron 8 faces 6 vertices 12 edges
.Faces are equilateral triangles

Dodecahedron
12 faces
20 vertices 30 edges

Faces are regular pentagons

Icosahedron
20 faces
12 vertices
30 edges
Faces are equilateral triangles

Prisms

A prism is a special kind of 3D shape. It is a polyhedron, which means that all its faces are flat. Its two ends are also the same shape and size, and they are parallel to each other.

A prism is the same size and shape all the way along its length.

Finding prisms

Look at this picture of a campsite. We've pointed out some prisms, but can you spot them all? You should be able to find eight.

Cross sections

If you cut through a prism parallel to one of its ends, the new face you make is called a cross section. It will be the same shape and size as the original flat face.

The tent shape's ends are parallel triangles, so we call it a triangular prism

All cross sections will be the same size and shape

Types of prism

There are many prisms in geometry.
Here are some of the most common.
The sides of a prism are made of parallelograms

1

Cuboid

A cuboid is a prism. The opposite ends are rectangles, so we also call it a rectangular prism.

3
Pentagonal prism
A pentagonal prism has a pentagon at each end and five rectangular sides.

Hexagonal prism

A hexagonal prism's parallel ends are hexagons - six-sided polygons.

TRY IT OUT

Spot the non-prism

Which of these shapes is not a prism? Check to see if it has parallel faces at either end. Also, if you sliced through the shape, parallel to the end faces, would all the cross sections be the same?

Answer on page 320

Nets

A net is a 2D shape that can be cut out, folded, and stuck together to make a 3D shape. Some 3D shapes, such as the cube on this page, can be made from many different nets.

A net is what a 3D shape looks like when it's opened out flat.

-

Net of a cube

1This shape, made of six squares, can be folded to make a cube. In geometry, we say the shape is a net of a cube.

The end square forms
the lid

4The flat net has now been turned into a cube.

TRY IT OUT

Find more nets

Here are three more nets of a cube. There are actually 11 different nets for a cube - can you work out any others?

(2)

(3)

Answer on page 320

Nets for other 3D shapes

Cuboid

The net of a cuboid is made of six rectangles of three different sizes.

3

Square-based pyramid

One square and four triangles form the net of a square-based pyramid.

Cylinder

A cylinder's net is formed from just two circles and a rectangle.

4Triangular prism
A triangular prism is made from a net of three rectangles and two triangles.

REAL WORLD MATHS

Boxes need tabs

When we draw a net for a real 3D shape, we usually include tabs. Tabs are flaps added to some of the shape's sides so that we can stick the box together more easily. If you take an empty cereal box apart, you'll see the tabs that have been glued to some of the panels to form the box.

Angles

An angle is a measure of an amount of turn, or rotation, from one direction to another. It is also the difference in direction between two lines meeting at a point.

Describing angles

An angle is made of three parts: two lines, called arms, and a vertex, where the arms meet. We show the angle by drawing a curved line, or arc, between the arms. The size of the angle is written inside or next to the arc.

Degrees

We use units called degrees to precisely describe an amount of turn, which is how we measure the size of an angle. The symbol for degrees is a small circle, like this: ${ }^{\circ}$.

1Here is a full turn divided into degrees. A full turn always has 360 degrees.

2This is one degree (1°). It's equal to $1 / 360$ of a full turn.

3This shows ten degrees $\left(10^{\circ}\right)$. We can see that the angle made by this turn is ten times larger than the 1° angle. \qquad

REAL WORLD MATHS

Why 360 degrees?

One theory to explain why there are 360° in a full turn is that ancient Babylonian astronomers divided a full turn into 360 parts, because their year was 360 days long.

Right angles

Right angles are important angles in geometry. In fact, they are so important they get their own special symbol!

When you draw the right angle symbol on an angle, you don't need to write " 90° " next to it.

1A quarter turn like this is 90°. We call it a right angle. When we mark a right angle, we make a corner symbol, like this: \llcorner. We don't have to write " 90° " next to the symbol.

2
A half turn is 180°. It's also called a straight angle, because it makes a straight line. You can also think of a straight angle as two right angles.

4
A full turn is all the way round to where the line started, which is 360°. A full turn is made up of four right angles.

Types of angle

As well as the right angle, there are other important kinds of angle that we name according to their size.

Acute angle

When an angle is less than 90°, we call it an acute angle.

2
Right angle
A quarter turn is exactly 90°. We call it a right angle.

3

Obtuse angle

An angle that's more than 90° but less than 180° is an obtuse angle.

4Straight angle An angle of exactly 180° is called a straight angle.

5
Reflex angle
An angle that's
between 180° and 360° is called a reflex angle.

The arm turns anticlockwise to make a 45° angle

Angles on a straight line

Angles on a straight line always add up to 180°.

Sometimes, simple rules can help us work out unknown angles. One of these rules is about the angles that make up a straight line.

1If we rotated a line halfway round from where it started, the line would turn 180° and it would make a straight line.

3
No matter how many angles you create on a straight line, they will add up to 180°, as long as all the lines start from the same point.

2Imagine that your line made a stop on the way to the half turn, creating an extra line. The two angles made by the new line add up to 180°

4If the angles on a straight line are called a and b, we can write this rule as a formula:

$$
a+b=180^{\circ}
$$

Finding a missing angle on a straight line
Let's use the rule we've just learned to find the missing angle on this straight line.

We know that the three angles on the straight line add up to 180°.

We know that one angle is 45° and the other is 55°. Let's add the angles together: $45^{\circ}+55^{\circ}=100^{\circ}$

So the missing angle is 80°.

Angles at a point

Another rule of geometry is that angles that meet at a point always add up to 360°. This rule helps us work out missing angles when they surround a point.

Angles round a point always add up to 360°.

1We know that if we turn a line all the way round to where it started, it makes a full turn, which is 360°.

3This time, there are four lines meeting at a point. But it doesn't matter how many lines there are - the angles will always add up to 360°.

2Imagine that the line stops on its way to making a full furn, creating new lines that meet at the same point. The angles formed all add up to 360°.

4If the angles that meet at a point are called a, b, and c, we can write this rule as a formula:

$$
a+b+c=360^{\circ}
$$

Finding the missing angle round a point

Let's use the rule we've just learned to find the missing angle at this point.

We know that the three angles round this point add up to 360°. \qquad

We also know that one angle is 160° and the other is 130°. Let's add these angles together: $160^{\circ}+130^{\circ}=290^{\circ}$

Now let's subtract that total from $360^{\circ}: 360^{\circ}-290^{\circ}=70^{\circ}$

This means that the missing angle is 70°.

Opposite angles

When two straight lines cross, or intersect, they create two pairs of matching angles called opposite angles. We can use this information to work out angles we don't know.

When two lines intersect, the angles directly opposite each other are always equal.

The opposite angles

1Let's look at what's special about opposite angles. First, we draw two intersecting straight lines, then measure the bottom angle.

3Now let's look at the other pair of opposite angles. When we measure them, we find that they are also equal - they are both 110°.

9When we measure the top angle, we find it's the same as the bottom one. The angles opposite each other are equal.

4If we call the angles a, b, c, and d, we can write what we know about opposite angles like this:

$$
a=c \quad b=d
$$

Finding missing angles

When two lines intersect, if we know the size of one angle, we can work out the sizes of all the others.

These two lines intersect, creating two pairs of opposite angles. We know that angle dis 30°.

3We can use what we know about angles on a straight line to work out angle a. We know that $a+b=180^{\circ}$, so a must be $180^{\circ}-30^{\circ}$. So a $=150^{\circ}$.

2 Angles band d are opposite angle b must be 30°, too.

4Angles a and c are opposite, so we know that means they are equal. So c is 150°.

TRY IT OUT

Angles brainteaser

Can you work out these missing angles? Use what you know about the size of a right angle, the angles on a straight line, and that opposite angles are equal.

Answers on page 320

Add a and b to make d's opposite angle

Remember, $d+e=180^{\circ}$

Using a protractor

We use a protractor to draw and measure angles accurately. Some protractors measure angles up to 180°, while others can measure angles up to 360°.

Always place the protractor so its centre is exactly on the angle's vertex (point).

Drawing angles

A protractor is essential if you need to draw an angle accurately.

Here's how to draw a 75° angle. Draw a straight line with a pencil and ruler, and mark a point on it.

Make a second mark

2Put the protractor's centre on the marked point. Read up from 0°, and make a second mark at 75°.

Draw a straight line between the two points

[^25]
Measuring angles up to 180°

You can use a protractor to measure the angle formed by any two lines.

Use the inner scale to measure the smaller angle

Use the outer scale to measure the larger angle

2Put the protractor along one arm of the angle. Take a reading from where the other arm crosses the protractor.

1Use a ruler and pencil to extend the angle's arms if you need to. This makes it easier to read the angle.

3To measure the larger angle, read up from zero on the other side of the protractor.

Measuring reflex angles

Reflex angles are angles larger than 180°. We can use a semicircular protractor to measure a reflex angle if we combine our measurements with what we know about calculating angles.

To find angle a, put the protractor along one arm, facing downwards.

2
When we measure angle b, we find that it's 60°.

We know there are 360° in a full turn. So, angle a must be $360^{\circ}-60^{\circ}$.

4

TRY IT OUT

Measure the angles

Practise your protractor skills by measuring these angles. It helps to estimate angles before measuring them - that way, you'll make sure you read from the correct scale.

Make sure you read from the correct scale

Answers on page 320

Angles inside triangles

We give names to triangles according to the lengths of their sides and the sizes of their angles. We learned about the sides of a triangle on page 214, so now let's have a closer look at its angles.

Types of triangles

Here are the triangles we see most often in geometry.

1Equilateral triangle
An equilateral triangle is the more usual name for a regular triangle. Its three angles are all 60°. Its three sides are always the same length, too.

REAL WORLD MATHS

Strong shapes

Triangles are useful shapes for engineers as they are stable and hard to pull out of shape. This geodesic dome is made from triangular panels, which work together to carry weight evenly. This makes the structure light, but very strong.

The two angles that are not right angles can be the same or different

2Right-angled triangle
A right-angled triangle contains one right angle, which is exactly 90°. The other two angles can be the same, or different, like this one. It can have two sides of the same length, or all three can be different.

Isosceles triangle
An isosceles triangle has two angles of equal size and two sides of the same length. The third angle can be any size.

The third angle
can be acute
(less than 90\%)

4

Scalene triangle

A scalene triangle has no equal sides, and all its angles are different. It can contain one right angle, or it can be made up of a combination of acute and obtuse angles.

Acute angle

Calculating angles inside triangles

The special thing about the angles inside a triangle is that they always add up to 180°. It doesn't matter whether the lengths of the sides and angles are the same or different - when we add the angles up, we always get the same answer.

7Look at the three sails on this boat. Each one is a triangle, but all three triangles are different.

2This triangle has angles of 60°,

In this triangle, two of the angles are the same. When we add all three angles we get: $70^{\circ}+70^{\circ}+40^{\circ}=180^{\circ}$
 30°, and 90°. Let's add them up:
$60^{\circ}+30^{\circ}+90^{\circ}=180^{\circ}$

Prove it!

One way to test that the angles inside a triangle add up to 180° is to take the three corners from a triangle and see how perfectly they fit along a straight line. We already know a straight line is 180°.

[^26]

Look at the straight line

Make all three corners touch.
Look how they form a straight line, which we know is 180°.

Finding a missing angle in a triangle

The rule we've just learned can be really useful, because if we know the size of two of the angles inside a triangle, we can work out the third.

T
What's this missing angle?We know that one angle is 55° and

3
Let's add these two angles together:
$55^{\circ}+75^{\circ}=130^{\circ}$

4
Now let's subtract this total from 180° : $180^{\circ}-130^{\circ}=50^{\circ}$

5
This means the missing angle is 50°.

Angles inside

quadrilaterals
Quadrilaterals have different names, depending on the properties of their sides and angles. We looked at a quadrilateral's sides on pages 216-17. Now let's have a closer look at its angles.

All quadrilaterals have four angles, four sides,

Types of quadrilateral

Quadrilaterals are polygons with four sides and four angles. Here are some of the quadrilaterals we see most often in geometry.

1
Parallelogram
A parallelogram has two pairs of equal angles, opposite to each other.

3

Rectangle

A rectangle has four right angles and two pairs of equal, parallel sides.

3

 RhombusThe opposite angles of a rhombus are equal. Another name for a rhombus is a diamond.

- Square

A square is special kind of rectangle, with four right angles and four equal sides.

[^27]
Calculating angles inside quadrilaterals

The angles inside a quadrilateral always add up to 360°. There are two ways we can prove that this is true.

The angles inside a quadrilateral always add up to 360°.

2
Put the angles round a point You can tear the corners off a quadrilateral and arrange them round a point, like this. We know that angles round a point add up to 360°, so the quadrilateral's angles must add up to 360°, too.

Find the missing angle

So, now we know that the angles in a quadrilateral add up to 360°.
We can use this fact to work out missing angles in quadrilaterals.

Angles inside polygons

Polygons get their names from the number of their sides and angles. We learned about polygons' sides on pages 218-19. Now we're going to focus on their angles.

More sides means bigger angles

All the angles in a regular polygon are the same size. So, if you know one angle, you know them all. Look at these polygons. You can see that the

The sum of the angles inside a polygon depends on how many sides it has. more sides a regular polygon has, the larger its angles become.

Angles inside regular and irregular polygons
The angles inside polygons with the same number of sides always add up to the same amount. Let's look at the angles inside two different hexagons.

Regular hexagon

The angles inside this regular hexagon are all the same size. The six angles of 120° add up to a total of 720°.

2
Irregular hexagon
In this irregular hexagon, each angle is different. But when you add them up, the total is 720° - the same as for the regular hexagon.

Calculating the angles in a polygon

To find the sum of all the angles inside a polygon, we can either count the triangles it contains, or use a special formula.

Counting triangles

1Look at this pentagon. You can see that we can divide the five-sided shape into three triangles.

A pentagon can be split into three triangles

2We know that the angles in a triangle add up to 180°. The pentagon is made of three triangles, so the angles add up to $3 \times 180^{\circ}$, which is 540°

Using a formula

1Here's a rule about the angles in polygons: the number of triangles a polygon can be divided into is always two fewer than the number of its sides.

2Let's look at the pentagon again. It has five sides, which means it can be divided into three triangles.

So, we can write the sum of the angles in a pentagon like this: $(5-2) \times 180^{\circ}=3 \times 180^{\circ}=540^{\circ}$.

4
There's a formula that works for all polygons. If we call the number of sides n, then:

SUM OF ANGLES IN A POLYGON $=(n-2) \times 180^{\circ}$

TRY IT OUT

Polygon poser

Combine what you've learned about angles inside a polygon to work out the seventh angle in this irregular heptagon. Remember, if you know how many sides a polygon has, you can work out the sum of its angles.

Answer on page 320

Coordinates

Coordinates help us to describe or find the position of a point or place on a map or grid. Coordinates come in pairs, to tell us how far along and up or down the point is.

In a pair of coordinates, the x coordinate always comes before the y coordinate.

Coordinate grids The y axis is
 vertical

1This grid is called a coordinate grid. It's made up of horizontal and vertical lines that cross, or intersect, to make squares.

2The two most important lines on the grid are the x axis and the y axis. We use them to help us describe the coordinates of points on the grid.

3The x axis is always horizontal, and the y axis is vertical.

Plotting points using coordinates

We can also use coordinates to place, or plot, points accurately onto a grid.

The origin's coordinates

To plot the coordinates (4, 2), we first count four squares along the x axis.

9
Next, we count two squares up the y axis.

TRY IT OUT

Find the

 coordinatesCan you write down the coordinates of points A, B, C, and D ? Remember the x coordinate is written first, then the y coordinate.

We sometimes write the coordinates next to the point

Now we mark the point we have reached with a dot.

REAL WORLD MATHS

Grids and maps

One of the most common ways we use coordinates on a grid is to find locations on a map. Most maps are drawn with a coordinate grid.

Positive and negative coordinates

The x and y axes on a grid can go either side of zero, just as they do on a number line. On this kind of grid, a point's position is described with positive and negative coordinates.

Quadrants of a graph

When we extend the x and y axes of a grid beyond the origin, we create four different sections. These are called the first, second, third, and fourth quadrants.

Coordinates can be positive or negative, depending on the quadrant they are located in

Plotting positive and negative coordinates

Points on a grid can have positive or negative coordinates,

Both coordinates are positive or a mixture of both, depending on which quadrant they are in.

1In the first quadrant, both coordinates are made of positive numbers. Point A is two squares along the x axis and 4 squares up the y axis, so its coordinates are $(2,4)$.

2In the second quadrant, point B is 2 squares behind the origin (0,0), so the x coordinate is -2 . It's 3 squares up on the y axis, so point B's coordinates are ($-2,3$).

[^28]4In the fourth quadrant, point D is 6 squares along the x axis and 3 down on the y axis. So, its coordinates are $(6,-3)$.

Both coordinates are negative

The x coordinate is : positive and the y coordinate is negative

Using coordinates to draw a polygon

We can draw a polygon on a grid by plotting its coordinates, then joining the points with straight lines.

Remember, positive or negative numbers in coordinates tell us in which quadrant we will find a point.

How to plot and draw a polygon on a grid

We start by plotting these four coordinates on the grid:
$(2,4) ;(-2,4) ;(-4,-4) ;(4,-4)$.

2Now we use a pencil and ruler to join up the first two points we plotted.

3
We carry on joining up the points until we have made a shape called a trapezium.

TRY IT OUT

Plotting posers

0
Can you work out the coordinates that make the points of this sixsided shape, called a hexagon?

(2)If you plotted these coordinates on a grid and joined the points in order with straight lines, what shape would you draw?
$(1,0)(0,-2)(-2,-2)(-3,0)(-1,2)$

Position and direction

We can use a grid and coordinates to describe the positions of places on a map.

How to use coordinates on a map
Maps are often divided up by a square grid, so we can pinpoint the position of a place by giving its square's coordinates.

1Every square on the map has a unique pair of coordinates that describe its position.

2The first coordinate tells us how far along the grid to count horizontally. The second coordinate tells how many squares to count up vertically.

3This map uses letters for the horizontal coordinates and numbers for the vertical coordinates. Often, maps use numbers for both the horizontal and vertical coordinates.

4
We can use map coordinates to find our way round Cybertown's theme park, Astro World. The sheep in the petting zoo is two squares along and 10 squares up. Its coordinates are B10.

5The ducks in the pond are four squares along and three squares up. So, their coordinates are D3.
-
To find what's in square A9, we count one square to the right and nine squares up. The square contains the ice cream cart.

TRY IT OUT

Find the spot

See if you can navigate your way round the map by finding these things:

1
What can you find at square G10?

Now find H3. What's in the square?

Can you give the coordinates of the table with two robots sitting at it?

Answers on page 320

Compass directions

A compass is a tool we use for finding a location or to help us move in a particular direction. It has a pointer that always shows the direction of north.

The four cardinal compass points are: north (N), south (S), east (E), and west (W).

Points on a compass

Compass points show directions as angles measured clockwise from the direction north. We call these directions bearings.

Northwest is halfway

Southwest

East's bearing is 90° clockwise from north a bearing of 180°. The main compass points are: north (N), south (S), east (E), and west (W). We call them the cardinal points.

2Halfway between the cardinal points are the ordinal points: northeast (NE), southeast (SE), southwest (SW), and northwest (NW).

Using a compass

 with a mapMost maps are printed with a north arrow. If we align north on the compass with north marked on a map, we can find the directions to other locations on the map. We can then use our compass to get from one place to the other.

Let's find the direction from Point A to Point B. First, we turn the map so that its north arrow aligns with the compass's north arrow.

Read off where the line meets the compass

Using a compass to navigate
Let's practise using compass bearings by navigating our way round this map of the Android Islands in Cyberland.The motor boat could get to the cafe via this course: three squares north, then four squares east. We write this as $3 \mathrm{~N}, 4 \mathrm{E}$.

2The canoeist can reach the cave by following this course: $2 E, 2 S, I W$.

3 One way for the yacht to get to the harbour would be to sail $6 \mathrm{~N}, 3 \mathrm{~W}, \mathrm{IN}, 1 \mathrm{~W}$.

TRY IT OUT

Get your bearings

Now it's your turn to navigate your way around the Android Islands. Can you write directions for these journeys? to the puffins on Puffin Island?

If the yacht sailed a course of $1 \mathrm{~W}, 2 \mathrm{~N}, 2 \mathrm{~W}, 1 \mathrm{~S}$, 1 W , where would it reach?

4
If the canoeist paddled $3 \mathrm{E}, 6 \mathrm{~S}$, where would he end up?

Reflective symmetry

A shape has reflective symmetry if you can draw a line through it, dividing it into two identical halves that would fit exactly onto each other.

How many lines of symmetry?
A symmetrical shape can have one, two, or lots of lines of symmetry. A circle has an unlimited number!

1One vertical line of symmetry This butterfly shape has only one line of symmetry. The shape is exactly the same on each side of the line. If you drew a line anywhere else on the shape, the two sides wouldn't be the same.

2Horizontal line of symmetry On this shape, the top and bottom halves are mirror images of each other.

3
Two lines of symmetry
This shape has both a horizontal and a vertical line of symmetry.

Each line of symmetry

Lines of symmetry can be diagonal.

Four lines of symmetry
This clover shape has one vertical, one horizontal, and two diagonal lines of symmetry.

Lines of symmetry in 2D shapes

Here are the lines of symmetry in some common 2D shapes.

Isosceles triangle One line of symmetry

Regular pentagon
Five lines of symmetry

Rectangle
Two lines of symmetry

Regular hexagon Six lines of symmetry

Equilateral triangle
Three lines of symmetry
Every straight
line that divides a circle through its centre is a line of symmetry

Unlimited lines of symmetry

Asymmetry

Some shapes are asymmetrical, which means they don't have any lines of symmetry. You can't draw a line anywhere on them to make a mirror image.

TRY IT OUT

Number symmetry

Look at each of these numbers. How many lines of symmetry does each one have? The answer will either be one, two, or none.

Answers on page 320

Rotational symmetry

We say that an object or shape has rotational symmetry if it can be turned, or rotated, about a point until it fits exactly into its original outline.

Centre of rotational symmetry

The point about which an object is rotated is called its centre of rotational symmetry.

1Let's take a rectangular piece of card and put a pin through its centre, which is the point where the rectangle's two diagonals meet. Now let's draw around the outline of the rectangle.

2If we rotate the rectangle around the pin, after half a turn it will fit exactly over the outline we drew. This means it has rotational symmetry. Another half turn will bring the rectangle back to its starting position.

TRY IT OUT

Symmetrical

 or not?Three of these flower shapes have rotational symmetry. Can you spot the one that doesn’t?

(1)

2

(3)

(4)

Order of rotational symmetry

The number of times a shape can fit into its outline during a full turn is called its order of rotational symmetry.

Let's see how many times this three-pointed shape can fit into its outline. First, we rotate it until the yellow tip reaches the next point.

2
Now we rotate the shape again so the yellow tip moves to the next point.

3One more rotation and the yellow tip is back where it started. This shape can fit onto itself three times, so it has an order of rotational symmetry of 3 .

Order of rotational symmetry in 2D shapes

Here are the orders of rotational symmetry for some common 2D shapes.

Equilateral triangle Rotational order: 3

Hexagon
Rotational order: 6

Square Rotational order: 4

Circle
Infinite number of orders of rotation

REAL WORLD MATHS

Symmetrical decoration

We often use rotational symmetry to make decorative patterns. In Islamic art, reflective and rotational symmetry are used to create intricate patterns on tiles for mosques and other buildings.

Reflection

In maths, we call a change in the size or position of an object a transformation. Reflection is a kind of transformation in which we make a mirror image of an object.

Reflection means flipping an object or shape over an imaginary line.

What is reflection?

A reflection shows an object or shape flipped so it becomes its mirror image across a line of reflection.

1
The original object is called the pre-image.

2A reflection takes place over a line of reflection, like this one. It's also called the axis of reflection or mirror line.

3The reflected version of the original shape or object is called the image

Lines of reflection

A shape and its reflected image are always on opposite sides of the line of reflection. Every point on the image is the same distance from the line of reflection as the pre-image. The line of reflection can be horizontal, vertical, or diagonal.

Drawing reflections

It's easier to draw reflections
using grid or dot paper, which will help you to place the reflection accurately.

Vertical line of reflection

1Let's try reflecting a triangle. First, draw a triangle on grid or dot paper. Label the vertices A, B, and C. Now draw a vertical line of reflection.

3Do the same for the other two vertices of the triangle, marking the new points B^{\prime} and C^{\prime}.

The line between the two points crosses the line of reflection at a right angle

2Count the squares from A to the line of reflection. Now count the same number of squares on the other side of the line and mark the point A^{\prime}.

Each point on the image is the same distance from the line of reflection as the pre-image.

4Finally, draw lines to join points A^{\prime}, B^{\prime}, and C^{\prime}. You now have a new triangle that is a reflection of triangle $A B C$.

TRY IT OUT

Make a reflection pattern

You can use reflection to make symmetrical patterns. Draw a horizontal and a vertical line on grid paper to make four quadrants, and copy this design into the first quadrant. Then reflect it horizontally and vertically into each quadrant to complete the pattern.

Rotation

Rotation is a kind of transformation, in which an object or shape turns around a point called the centre of rotation. The amount we rotate the shape is called the angle of rotation.

Centre of rotation

The centre of rotation is a fixed point, which means it doesn't move. Let's look at what happens when we rotate the same shape clockwise around different centres of rotation.

Angle of rotation

The angle of rotation is the distance that something rotates around a point,

Rotation patterns

We can make patterns by rotating a shape lots of times around the same centre of rotation. This T shape makes different patterns depending on the centre and angle of rotation we choose.

TRY IT OUT

Make a rotation creation

All you need to make your own rotation pattern is some card and paper, a pin, a pair of scissors, and a pencil.

(1)

Draw a simple shape onto card and cut it out.

(2)

Put a pin through the the shape to make the centre of rotation.

Pin the shape to some paper and draw round the outline.

Rotate the shape a little and draw round it again. Repeat until you have a pattern you like!

Translation

A translation moves an object or shape into a new position by sliding it up, down, or sideways. Translation doesn't change its shape or size.

Translation is another kind of transformation, along with reflection and rotation.

What is translation?

Translation, like reflection or rotation, is a kind of transformation. With translation, the object and its image still look the same, because the original is not reflected, rotated, or re-sized - it just slides into a new position.

The original object or shape is called the pre-image

1Look at the robot in this maze. It has moved vertically down by five squares.

2This time, the robot has moved three squares horizontally to the right.

The translated object or shape is called the image.

3In this translation, the robot has moved one square up and two squares to the right.

REAL WORLD MATHS

Translation for tessellation

Translation is often used to make patterns called tessellations, which are identical shapes arranged together without leaving any gaps. This tessellation has been made by translating purple and orange cat shapes diagonally so that they interlock.

Using a grid to translate a shape

When we use a grid to translate a shape, we use the word "units" to describe the number of squares the shape is translated by. Let's translate a triangle!

Mark a new point six units up from each original vertex

Let's move the triangle up by six units.
First, we label the vertices A, B, and C. Then we count up six units from each vertex and label the new points A^{\prime}, B^{\prime}, and C^{\prime}.

3To make a diagonal translation, count six units up, then four units to the right from each vertex. Plot the three new points and draw the new triangle $A^{\prime} B^{\prime} C^{\prime}$.

2
Now use a ruler and pencil to join up the points you made to draw the new triangle $A^{\prime} B^{\prime} C^{\prime}$.

TRY IT OUT

Triangle translations

How many different translations of the triangle are possible on this geoboard? We've shown one to get to you started - now it's over to you!

Answer on page 320

Statistics is about collecting data and finding out what it can tell us. The clearest way to organise and analyse a large amount of data is often to present it in a visual way, for example by drawing a graph or chart. We also use statistics to work out the chance, or probability, that something will happen.

Data handling

Statistics is often called data handling. "Data" just means information. Statistics involves collecting, organizing, and presenting (displaying) data. It also involves interpreting the data - trying to understand what it can tell us.

1We can collect data by carrying out a survey. In a survey, we ask a group of people questions and record their answers. These two survey robots are asking a class of school children which fruit they prefer.

2
Survey questions are often written on a form called a questionnaire. This is the robots' questionnaire. It asks children to choose between five fruits. .

3If there are several possible answers to a question, these may be listed on the questionnaire. There will be a tick box beside each answer so that it is quick and easy to record a response.

4The answers the children give, before the data is organized, are called raw data.

This tick shows one child likes grapes best

Voting

Another way to collect data is to hold a vote about something. You ask a question, and people give their answers - for example, by raising a hand. Then you count the number of raised hands. These robots are voting on whether they prefer nuts or bolts.

What do we do with data?

Once data has been collected it needs to be organized and presented. Tables, charts, and graphs are quick ways of making data easy to read and understand.

Most popular fruit	
Type of fruit	Number of children
Orange	3
Apple	6
Grapes	8
Watermelon	2
Banana	5

1This table, called a frequency table, shows the number of children that preferred each type of fruit.

The number of children is

2
A bar chart, also called a bar graph, is a diagram that shows data without the need for lots of words or lists of numbers.

Data sets

A set is a collection of data. It can be a group of numbers, words, people, events, or things. Sets can be divided into smaller groups called subsets.

The class of children that the robots asked about their favourite fruit is a set. The class contains 24 children, a mixture of boys and girls.

[^29]

Tally marks

We can use tally marks to count things quickly when we're collecting data, such as answers to a survey question. A tally mark is a vertical line that represents one thing counted.

1Draw a tally mark to show each result you record. For every fifth tally mark, draw a line across the previous four. This is how the numbers one to five look when written as tally marks.

2Arranging tally marks into groups of five helps you to work out the total quickly. First, count all the groups of five, then add any remaining tallies. This is how 18 looks in tally marks.

3A tally chart, such as the one below, uses tally marks to show the results of a survey.

| || 12 3
 III
 $1 \mid 1$ 4H 5

H| H

 $5+5+5+3=18$Each tally mark represents one child.

REAL WORLD MATHS

Other tally marks
Tally marks vary across the world. In some Asian countries, they are based on a Chinese symbol made up of five strokes.

In parts of South America, four lines are drawn to make a square, then a diagonal line is drawn across it for the fifth mark.

Frequency tables

A frequency table is a way of summarizing a set of data. The table shows you exactly how many times each number, event, or item occurs in the set of data.

The frequency of something tells you how often it happens.

1You can create a frequency table by counting the tally marks in a tally chart and writing the totals in a separate column.

2This frequency table is based on the survey of how children travelled to school. The frequency column shows you how many children used each type of transport.

3Frequency tables don't always look the same. The table here uses the same data as the one above, but it doesn't include the tally marks. This makes the table simpler and easier to understand.

4Some frequency tables split up data so it reveals more information. This table tells you how many adults and children visited a dinosaur museum each day during one week. It also tells you the total number of visitors there were (adults + children) each day.

Carroll diagrams

A Carroll diagram shows how a set of data, such as a group of people or numbers, has been sorted. Carroll diagrams sort data using conditions called criteria (the singular is criterion).

Carroll diagrams sort data into boxes.

1A criterion is like a yes/no question. Let's use a simple criterion to sort the group of 12 animals below. This is the criterion we'll use: "is the animal a bird or not?"

Pigeon

Ostrich

Horse

Cat

Butterfly

Eagle

Swan

Penguin

Duck

Dog

2This Carroll diagram uses our bird/not a bird criterion to sort the animals into two boxes. We put all the birds into the box on the left. Those animals that aren' \dagger birds go in the box on the right.

Bird	Not a bird
Pigeon	Butterfly
Duck	Cat
Penguin	Bat
Eagle	Bee
Swan	Dog
Ostrich	Horse

Animals that are birds and can fly

Not a bird

Butterfly
Bat Bee

Dog
Horse
Cat

Animals that are birds but can't fly
\qquad

Bird	Not a bird	Animals that are not birds but can fly
Pigeon Eagle Swan Duck	Butterfly Bat Bee	
Penguin Ostrich .7	Dog Horse Cat	Animals that are not birds and cannot fly

Sorting numbers

Carroll diagrams can sort numbers and show relationships between them. This diagram sorts the set of the numbers from 1 to 20 into even, odd, prime, and not prime numbers.

1If we read down the first column (yellow), we see all the prime numbers. The second column (green) shows all the non-primes.

2When we read across the first row (blue) we see all the even numbers. The second row (red) lists the odd numbers.

3All the even numbers that are not primes are in the box in the top right corner (orange). Odd numbers that are not primes are in the box beneath (pink).
Prime number

Even 2 number

Odd number

Prime number
$\begin{array}{llll}3 & 5 & 7\end{array}$
$\begin{array}{llll}13 & 17 & 19\end{array}$

Prime number
Even

2
number

Odd	3	5	7	11
number	13	17	19	

Odd number

Subset of prime numbers
from 1 to 20

Not a prime number

$\begin{array}{lllll}4 & 6 & 8 & 10 & 12\end{array}$
$\begin{array}{llll}14 & 16 \quad 18 \quad 20\end{array}$

1915

Not a prime number
$\begin{array}{lllll}4 & 6 & 8 & 10 & 12\end{array}$
$\begin{array}{llll}14 & 16 & 18 & 20\end{array}$

1915

Prime number
Not a prime number
$\begin{array}{lllll}4 & 6 & 8 & 10 & 12\end{array}$ $\begin{array}{llll}14 & 16 & 18 & 20\end{array}$
$1 \quad 9 \quad 15$

Subset of even prime numbers from 1 to 20 .

4The only even prime number, 2, is shown in the box in the top left corner (yellow). The box beneath (green) shows all the odd prime numbers.

Even number	2	$\begin{array}{lllll} 4 & 6 & 8 & 10 & 12 \\ 14 & 16 & 18 & 20 \end{array}$	Subset of odd
Odd number	$\begin{array}{llll} 3 & 5 & 7 & 11 \\ 13 & 17 & 19 \end{array}$	1915	from 1 to 20

Venn diagrams

A Venn diagram shows the relationships between different sets of data. It sorts the data into overlapping circles. The overlaps show what the sets have in common.

Venn diagrams show sets of data as overlapping circles.

1Remember, a set is a collection of things or numbers, or a group of people. For example, a set might be the foods you like or the dates of your family's birthdays. This group of eight friends forms a set. Most of them do activities after school.

2Each thing or person in the set is called a member or element of the set. Sets are often shown with a circle drawn around them. Here is the set of friends. :

3There are three after-school activities that the friends do: music lessons, art classes, and football practice. We can put the friends into smaller sets, according to which after-school activities they do.

[^30]

Art class

Each friend is a member of the set

Friend who does no after-school activities.

Football practice

No activities

4Let's join the music and soccer sets together so that their circles overlap. When we join two sets, it's called a union of sets. We've now made a Venn diagram.

5An overlap between two sets is an intersection. It shows when something belongs to more than one set. This intersection shows that Rona and Steve do both activities.

6Now let's join the art set to the other two sets, so that all three sets overlap. If we look at the intersections, we can see which friends do more than one activity.

7Our three-set Venn diagram includes only seven of the eight friends. Owen doesn't do any after-school activities, so he doesn't belong to any of those sets.

The universal set

The universal set is the set that contains everybody or everything that is being sorted, including those not in the overlapping sets.

1To show the universal set, we draw a box around all the intersecting circles in our diagram.

2The box must include Owen. Even though he is not in any of the after-school activity sets, he is still part of the group being sorted.

Averages

An average is a kind of "middle" value used to represent a set of data. Averages help you to compare different sets of data, and to make sense of individual values within a data set.

The average is the value that's most typical of a set of data.

1The average age of the Reds football team is 10 . Not all the players are 10 years old - some are 9 and some are 11 . But 10 is the age that is typical of the team as a whole.

Average age $=10$

Player's age

2The average age of the Blues football team is 12. Comparing the two averages, we can see that the Blues team is, typically, older than the Reds.

Average age $=12$

3An average can also tell us if an individual value is typical of the data set or unusual. For example, the Reds' average age of 10 can tell us if these three players aged 9,10 , and 11 are typical of the team or not.

Not typical of team

Typical of team

Not typical of team

Types of average

We can use three different types of average to describe a set of data, such as the heights of a group of giraffes. They are called the mean, the median, and the mode. Each one tells us something different about the group. But they all use a single value to represent the group as a whole. To find out more, see pages 277-79.

The mean

When people talk about the average, they are usually talking about the mean. We work it out by adding up the individual values in a group and dividing the total by the number of values.

The mean is the sum of all values divided by the number of values.

1Let's find the mean height of this group of five giraffes.

2First, we add up all the heights of the giraffes: $3.7+4.4+2.8+2.8+3.8=17.5$

3Now divide the total height by the number of giraffes: $17.5 \div 5=3.5$

4So, the mean height of these giraffes is 3.5 m .

TRY IT OUT

Is it hot today?
Or just average?
Weather forecasts often mention average or mean temperatures. Here are the midday temperatures for a week. Let's work out the mean temperature.

Answer on page 320

First, add up all the individual temperatures.

Then count the number of temperatures.

(3)To find the mean, divide the total of the temperatures by the number of temperatures.

Wednesday
Monday Tuesday

Friday

Sunday

The median

The median is simply the middle value in a set of data when all the values are arranged in order, from smallest to largest or from largest to smallest.

The median is the middle value when all the values are arranged in order.

1Take another look at our group of giraffes. This time, let's work out the median height.

2 Write down the heights in order, starting with the shortest: $2.8,2.8,3.7,3.8,4.4$

3Now find the middle height. This is 3.7, because there are two heights that are shorter and two that are taller.

4 So, the median height is 3.7 m .

Add one giraffe

What happens if another giraffe, with a height of 4.2 m , joins the group to make six giraffes? With an even number of giraffes, there's no one middle height. We can still find the median by working out the mean of the middle two heights.

First, let's arrange
the heights of our
six giraffes in order: $2.8,2.8,3.7,3.8,4.2,4.4$

2The two middle heights are 3.7 and 3.8. Now let's work out their mean: $(3.7+3.8) \div 2=3.75$

Extra giraffe

Adding one more giraffe has changed the median height to 3.75 m .

The mode

The mode is the value that occurs most often in a set of data. It is also called the modal value. Sometimes a set of data has more than one mode.

To find the mode, look for the value that occurs most often. It often helps to arrange the values in order.

1We've worked out the mean and median heights of the giraffes. Now let's find the mode.

2It's easier to see the most frequent value if we put the heights in order, from shortest to tallest: 2.8, 2.8, 3.7, 3.8, 4.4

3Then we look at the list of heights to find the height that occurs most often. This is 2.8, which occurs twice.

4So, the mode of the heights is 2.8 m .

Multiple modes

When there are two or more values that are equally common and occur more often than the other values, then each of them is a mode. Let's see what happens when we add an extra giraffe, with a height of 4.4 m , to our group.

The range

The spread of values in a set of data is known as the range.
It's the difference between the smallest and largest values in the set. Like averages, the range can be used to compare sets of data.

1Let's find the range of our giraffes' heights. First, we'll write down their heights in order, from shortest to tallest. This gives us: $2.8,2.8,3.7,3.8,4.4$

2
Now let's find the shortest and tallest heights. These are 2.8 m and 4.4 m .

3
Next, subtract the shortest height from the tallest. This gives $4.4-2.8=1.6$

4So, the range of the giraffes' heights is 1.6 m .

TRY IT OUT

Roll the dice, find the average
Don't worry if you haven't got a group of giraffes handy to help you understand averages; you can use dice instead. For these investigations, all you need is two dice.

Roll both dice. Write down the total number of spots.

Do this 10 times.

3
Calculate the mean and find the mode, median, and range for the dice rolls.

What if you roll the dice 20 times? Do you get the same mean, mode, median, and range?

To find the range, subtract the smallest value from the largest. The result is the range.

Using averages

Whether it's best to use the mean, median, or mode depends on the values in your data and the type of data involved. The range is helpful if the mean, median, and mode are all the same.

Avoid the mean if one value is a lot higher or lower than the others.

1Use the mean if the values in a set of data are fairly evenly spread. Here, you can see the savings of five children. The mean (total savings \div number of children) is $£ 66.00 \div 5=£ 13.20$

2The mean can be misleading if one value is much higher or lower than the rest.

5For example, let's see what happens if Leroy saves $£ 98.50$, not $£ 14.50$. Now the mean is: $£ 150 \div 5=£ 30.00$, which makes it seem like the others are saving much more than they really are. In this case, it's better to use the median (middle value) of $£ 13.25$. This is much closer to the amount that most of the children save.

There are no very high or very

4The mode (most common value) can be used with data that isn't numbers. For example, in a survey of the colours of cars spotted, the mode might be blue.

Using the range

The range (the spread of values) can be useful for showing a difference between data sets when their mean, median, and mode are the same.

[^31]

The median (middle value) for each team is also 4 goals. So, too, is the mode (most common value), since both teams scored 4 goals twice.

The range is different. It's $8-1=7$ goals for the Reds. For the Blues, it's $6-1=5$ goals. So, the Reds' data has a wider spread of values.

Goals scored

Reds	Blues
8	6
4	5
4	4
3	4
1	1
Total: 20	Total: 20

Pictograms

In a pictogram, or pictograph, small pictures or symbols are used to represent data. To divide the data into groups, the pictures are usually placed in columns or rows.

1Let's look at this simple pictogram. It shows the results of a survey of the types and numbers of birds seen by children at a primary school.

2The set of data shown in the pictogram is all the birds seen. Each type of bird is a subset of this larger set. For example, there is one subset for blackbirds.

3A pictogram must have a key to explain what one symbol or picture stands for. Here, the key shows that one symbol means 1 bird spotted.

4Count the symbols in a column to find out how many birds of that type the children saw. This is the frequency of the subset. For example, the frequency of blackbirds is three.

Using large numbers

When a pictogram needs to show large numbers, each picture or symbol can represent more than one. In this pictogram, each symbol stands for two people who visited a library. Half a symbol represents one person.

KEY	16 people over 60 visited the library

Visitors to Maths Town Library

| Age | Number of people | |
| :--- | :---: | :---: | :---: |
| Over 60 years | | |
| $19-60$ years | | |
| 18 years | | |

1To find the number of visitors in a particular age group, count the full symbols in that row, multiply by two, and add one if there's a half symbol.

2How many people aged 11 to 18 visited? There are four full symbols plus one half symbol. So the calculation is: $(4 \times 2)+1=9$

A half symbol represents
one person

TRY IT OUT

Make a pictogram

Use this frequency chart to make a pictogram showing how much time Leroy spends playing video games during the school week.

Design a symbol or draw a picture to use on your pictogram. It must be suitable and easy to understand.

How many minutes will your symbol represent? Will you use half symbols as well as full ones?

(3)
Will you arrange your symbols in vertical columns or horizontal rows?

Leroy's gaming	
Day	Gaming time
Monday	30 minutes
Tuesday	60 minutes
Wednesday	15 minutes
Thursday	45 minutes
Friday	75 minutes

Block graphs

A block graph is a kind of graph in which one block, usually a square, is used to represent one member of a group or set of data. The blocks are stacked in columns.

Block graphs show data as stacks of square blocks.

1This tally chart shows the results of a survey that asked children which fruit they liked best. Let's use the data to make a block graph.

2
Each tally mark shows that one child chose that fruit.

Which fruit do you prefer?		Tally marks record frequency of the data
Orange	III <	
- Apple	H\| 1 ぐ.....	\ddots Six children preferred apples
Grapes	H\| III	
Waterme		
Banana	H1	

Most popular fruit

Grapes were the most popular fruit
 Give your block graph a title

Five children preferred bananas

Each block tells you that one child chose that fruit

We draw a square block on our graph for every tally mark on the chart. All the blocks must be the same size.

4We stack the blocks on top of each other in columns. Leave gaps between the columns. The number of blocks in a column shows how many times that fruit was chosen (the frequency).

Bar charts

A bar chart uses bars or columns to represent groups or sets of data. The size of each bar shows the frequency of the data. Bar charts are also called bar graphs and column graphs.

The height or length of a bar shows the frequency.

1Let's look at this bar chart. It uses data from a survey of car colours. The bars are all the same width, separated by gaps.

2The chart is framed on two sides by lines called axes. The bars for car colours sit on the horizontal axis. A scale on the vertical axis shows the number of cars seen (the frequency).

3To find out how many white cars were seen, look across from the top of the White bar to the vertical axis. Then read the number (5) off the scale.

4We can redraw the same chart so that the bars are horizontal, going across the chart, rather than vertical.

5The car colours are now along the vertical axis, while the number of cars (the frequency) can be read off the horizontal axis.

The scale is now along the horizontal axis

Drawing bar charts

To draw a bar chart you need a pencil, a ruler, an eraser, coloured pens, pencils, or crayons, and squared paper or graph paper. Most importantly, you need some data!

Draw your bar charts on squared paper.

Let's use the data in this frequency table. It shows the results of a survey of instruments played by a group of children.

2It's best to draw our bar chart on paper marked with small squares. This makes it easier to mark a scale and draw the bars.

3First, we draw a horizontal line for the x axis and a vertical line for the y axis.

4Next we draw marks on the x axis to show the width of the bars that represent the different instruments. All the bars must be of the same width. Let's make ours 2 small squares wide.

5Now let's add a scale to the y axis to represent the number of children. We need a scale that covers the range of numbers on the table but doesn't make our chart look stretched or squashed. A scale from 0 to 8 works well here.

6Now let's start drawing the bars for our instruments. The first frequency in the table is 7 , which represents the number of children who play guitar.

7We find 7 on the vertical scale of the y axis. Next, we draw a short horizontal line level with 7 . It must be exactly above the marks we made for the guitar bar on the x axis. We'll make the line 2 small squares long, the same as the distance between the markers.

8Then we do the same for all the other instruments.

Use a ruler to make sure your lines are straight

Give your barchart a title

9To complete the guitar bar, we draw two vertical lines up from its markers on the x axis. The lines join up with the ends of the horizontal line we drew earlier.

10Then we do the same for all the other instruments.

11Finally, let's colour in the bars. The bars can be all the same colour if you want. But if we make the bars different colours, it may make the chart easier to understand.

The two vertical lines meet the horizontal line to form a bar..

Line graphs

On a line graph, frequencies or measurements are plotted as points. Each point is joined to its neighbours by straight lines. A line graph is a useful way to present data collected over time.

Line graphs are great for showing data over a length of time.

1Let's look at this line graph. It shows the average monthly temperatures recorded in Maths Town over one year.

2The months of the year are listed on the horizontal x axis, and a temperature scale runs up the vertical y axis.

REAL WORLD MATHS

Counting the beats

A heart monitor is a machine that records how fast your heart is beating. It shows the data as a line graph like a wiggly line on a screen or print out.

3The average temperature for each month is plotted with an " x ". All the crosses are linked to form a continuous line.

4The graph makes it easy to see which were the warmest and coldest months of the year. It also lets us compare the temperatures in different months.

Reading line graphs

This graph tells us how Jacob grew between the ages of 2 and 12 . We can see how tall he was at any age by going up from the x axis to the line, then across to the y axis. We can also estimate his height between yearly measurements.

1Let's see how tall Jacob was aged 6 . We find 6 on the x axis and then go straight up.

2When we meet the green line, we go straight across to the y axis. This shows us that Jacob was 110 cm tall at age 6 .

3We can also work out Jacob's height at age $91 / 2$. Going up and across, the y axis tells us he was probably 132 cm tall.

Conversion graphs

A conversion graph uses a straight line to show how two units of measurement are related.

1This graph has kilometres on the x axis and miles on the y axis. The line lets us convert from one unit to the other.

2To change 80 km into miles, we go along the x axis until we reach 80 . Then we go up to the line and across to the y axis, where we read off 50 miles.

Kilometres/miles conversion graph

Drawing line graphs

A pencil, ruler, graph paper, and some data are all that's needed to draw a line graph. We plot data on the graph, usually as crosses.
Then we join up the crosses to create a continuous line.

1A class of school children recorded the outside temperature every hour as part of a science experiment. Let's use the data from this table to draw a line graph.

2We'll use special graph paper marked with small squares. It will help us to plot data and draw lines accurately.

3First, we need to draw our x and y axes. Time always goes along the horizontal x axis of a line graph. We mark and write the hours of the day along this axis, starting with 0800 .

4Temperature goes along the vertical y axis. We need to add a scale that covers the highest and lowest values in the table the range). A scale from 0 to $18^{\circ} \mathrm{C}$ works well. Let's mark every two degrees, otherwise the scale will look too crowded.

5We'll label the horizontal x axis "Time" and the vertical y axis "Temperature ($\left.{ }^{\circ} \mathrm{C}\right)^{\prime}$.

Hourly temperatures		
Time	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	The numbers in this column show the temperature at each hour
0800	6	
0900	8	
1000	9	
1100	11	
1200	12	
1300	15	
1400	16	
1500	15	
1600	13	

6
Now we can plot the data on our graph. Let's take each temperature in order and find its position on the graph.

7The first temperature is $6^{\circ} \mathrm{C}$ at 0800. We go up the y axis from the 0800 marker on the x axis until we get to 6 . We mark the position by drawing a small cross with a pencil.

8Now we plot the next temperature, $8^{\circ} \mathrm{C}$ at 0900 . We move along the x axis to the 0900 marker and go up until we're level with 8 on the y axis. Then we draw another cross.

9When we've plotted all the temperatures, we use a ruler to draw a straight line to link each pair of crosses. We do this between all the crosses on the graph, so that they're joined in an unbroken line.

10Let's finish by giving our graph a title, so that anyone looking at it will know immediately what it's about.

Our line shows how the . temperature rose during the morning and then started falling in the afternoon

Pie charts

A pie chart presents information visually. It's a diagram that shows data as "slices", or sectors, of a circle. Pie charts are a good way of comparing the relative sizes of groups of data.

The bigger the slice, the more data it represents.

Favourite types of movie

1Let's look at this pie chart. It shows the types of film that a group of school children said they most liked to watch.

2Even though there are no numbers on the chart, we can still understand it. The bigger the sector, the more children chose that type of film.

3We can compare the film types just by looking at the chart. It's clear that comedies are most popular and science fiction films are liked the least.

Labelling sectors

There are two other ways of labelling pie charts: using a key or using labels.

KEY

Science fiction

Comedy

Thriller

Action

Key

We use the colours in the key to find out what type of film each sector represents.

๑ Labels
We can also write our labels beside the chart or write them on the chart like here.

Pie-chart sectors

The circle, or "pie", is the whole set of data. Each of the sectors, or slices, is a subset. If we add up all the slices, we get the whole pie. We can express the size of a slice as an angle, a proper fraction, or a percentage.

1Because it is a circle, a pie chart is a round angle of 360°. Each sector that makes up the chart takes up part of this bigger angle.

$18+72+90+180=360^{\circ}$

2Angles
The angle of a sector is measured from the centre in degrees $\left({ }^{\circ}\right)$. Together, the angles of the sectors always add up to 360°.
 add upto 360°.
$1 / 20+1 / 5+1 / 4+1 / 2=1$

3 Fractions

Each sector is also a fraction of the chart. For example, a sector with an angle of 90° represents a quarter. Together, all the fractions add up to 1 .

$5 \%+20 \%+25 \%+50 \%=100 \%$

4

Percentages

Sectors may also be shown as percentages of the whole chart. A sector with an angle of 90° is 25 per cent. Together, the percentages add up to 100\%.

TRY IT OUT

Pie-chart puzzles

Here are two problems to solve. Remember that the angles of a pie chart's sectors always add up to 360°, and when expressed as percentages the sectors always come to a total of 100%.

Can you work out the mystery angle of the third sector on this pie chart?

2 What's the percentage of the missing sector on this pie chart?

Making pie charts

We can make a pie chart from a frequency table of data using a pair of compasses and a protractor. There's a formula to help us to work out the angle of each sector, or "slice", on the chart.

The angles of all the sectors in a pie chart add up to 360°.

Calculating the angles

The first step in drawing a pie chart is to calculate the angles of the slices.

1Let's use the data in this frequency table to draw a pie chart. The sectors will represent the different flavours.

Ice cream sales		
Flavour	Number sold	
Lemon	45	
Mango	25	F...................
Strawberry	20	
Mint	10	
Total	100	

Frequency (number of each flavour sold)

Total frequency (total number of ice creams sold)

2To find the angles, we take the frequency for each flavour and put it into the formula on the right.

3The table shows that out of 100 ice creams sold, 45 were lemon flavour. We can use these numbers in the formula to find the angle of the lemon sector: $45 \div 100 \times 360=162^{\circ}$

4Now we do the same for the other sectors. Then we add up all the angles to check that they come to $360^{\circ}: 162+90+72+36=360^{\circ}$

$$
\text { Angle }=\frac{\text { frequency }}{\text { total frequency }} \times 360^{\circ}
$$

Lemon ice creams sold

Total number of ice creams sold (total frequency)

Angle of
lemon sector

Angle of whole chart in degrees (${ }^{\circ}$)

$36^{\circ} .$.

Strawberry $=\frac{20}{100} \times 360^{\circ}=72^{\circ}$

Mint $=\frac{10}{100} \times 360^{\circ}=36^{\circ}$

Drawing the chart

Once we've found all the angles for the pie sectors, we're ready to make our chart. We'll need a protractor and a pair of compasses.

1We'll draw a circle using a pair of compasses, so that it's accurate. We must make our circle big enough so that it's easy to colour in and put labels on.

Draw the outline (circumference) of the circle

Draw a line back to the centre

2Let's draw a line from the centre to the circle's edge. We'll mark this as 0° and use it to measure our first angle.

3
Next, we put our protractor on our 0° line and use its scale to measure an angle of 162° for the lemon sector.

4Then we draw a line from the 162° angle back to the centre. The lemon sector is now complete. Let's colour it in.

5Now we align the protractor with the lower edge of the lemon sector and measure a 90° angle for the mango sector. We complete and colour in this sector.

Flavours of ice cream sold

We draw the remaining sectors in the same way. To finish off our chart, we add labels and a heading.

Probability

Probability is a measure of how likely something is to happen. It's often called chance. If something has a high probability, it's likely to happen. If something has a low probability, it's unlikely to happen. Probabilities are usually written as fractions.

Probability is the likelihood of something

1Let's think about tossing a coin. There are only two possible results: it will either land heads-up or tails-up.

2So what's the probability of tossing heads? Since you're just as likely to get heads as tails, there's an equal, or "even", chance of getting heads.

3
When you roll a dice, there are six possible results. So the probability of rolling a particular number, such as 3 , is lower than getting heads in a coin toss.

4 We usually write probabilities as fractions. We say there's a 1 in 2 chance of getting heads in a coin toss, so we write it as $1 / 2$. We've a 1 in 6 chance of rolling a 3 on a dice, so we write it as $1 / 6$.

Heads

With dice, there are six possible results

A smaller fraction means a lower

probability

REAL WORLD MATHS

Should I take my raincoat?

When meteorologists (weather scientists) make their forecasts, they include probability in their calculations. To predict whether or not it will rain, they look at previous days with similar conditions, such as air pressure and temperature. They work out on how many of those days it rained, and then they calculate the chance of rain today.

Probability scale

All probabilities can be shown on a line called a probability scale. The scale runs from 1 to 0 . An event that's certain is 1 , something that's impossible is 0 . Everything else is in between these values.

1We can be certain that the sun will rise tomorrow morning. Sunrise scores 1 and sits at the very top of the probability scale.

2At this moment, it's very likely that somewhere around the world a plane is flying in the sky.

3It's likely that at least one person among the pupils and staff at your school will have a birthday this week.

4There is an equal chance of getting heads or tails when you toss a coin. Equal chance is the scale's halfway point.

5It's unlikely that if you roll two dice you will throw a double six. As you'll know from board games, it doesn't happen often!

6There's little chance of you being struck by a bolt of lightning. Although it's possible, it's very unlikely.

7Flying elephants score 0 on the scale. Elephants don't have wings, so it's impossible to see a flying elephant.

Anything that scores 1 is sure to happen

1 CERTAIN

An event with a probability of $1 / 2$ is just as likely to happen as not

Calculating probability

We can use a simple formula to help us work out the probability of something happening. The formula expresses the probability as a fraction.
We can also change probability fractions into decimals and percentages.

1Here's a box of 12 pieces of fruit. It contains six apples and six oranges, randomly arranged. What's the chance of picking out an apple if we shut our eyes?

2Let's use the formula below to find the probability of choosing an apple:

number of results we're interested in

 number of all possible results

3We can picture the formula like this. The top part of the formula means how many apples it's possible to take out of the box (6). The bottom part is the total number of fruits that could be chosen (12).

4So, we've a 6 in 12 chance of picking an apple. We show this as the fraction $6 / 12$, which can be simplified to $1 / 2$.

REAL WORLD MATHS

Unexpected results

Probability doesn't always tell us exactly what's going to happen. There's a 1 in 6 chance that this spinner will land on red. If we spin it 6 times, we'd expect to get a red at least once. But we might get 6 reds - or none.

You can write probabilities as fractions, decimals, or percentages.

Decimals and percentages

Probabilities are most often written as fractions, but they can also be shown as decimals or percentages.

1This box of 12 cakes contains three chocolate cakes and nine vanilla cakes. With our eyes shut, we have a 3 in 12 chance of choosing a chocolate cake.

2Written as a fraction, the probability is $3 / 12$. We can simplify this to $1 / 4$. Now we divide 1 by 4 to find the probability as a decimal: $1 \div 4=0.25$. To change our decimal to a percentage, we simply multiply it by 100 . So, $0.25 \times 100=25 \%$

3Let's see what happens if the box contains nine chocolate cakes and three vanilla cakes.

4Now the probability of picking a chocolate cake is $9 / 12$, or $3 / 4$. This is the same as 0.75 or 75%.

TRY IT OUT

Probability dice

Throwing dice is a great way to investigate probability. Dice throws are often important in board games, so if you know the probability of certain combinations occurring, you might be able to improve your gameplay!

What is the most likely total to occur when you roll two dice together? Start by writing down all the possible scores, and adding the numbers together.

2
What are the two least likely totals to occur?

What are the probabilities of getting the most likely and the least likely totals?

In algebra, we replace numbers with letters or other symbols. This makes it easier to study numbers and the connections between them for example, to look at how they form patterns such as number sequences. By using algebra, we can also write helpful rules, called formulas, in a way that makes it easier to solve maths problems.

Equations

An equation is a mathematical statement that contains an equals sign. We can write equations using numbers, or with letters or other symbols to represent numbers. This type of maths is called algebra.

Balancing equations

 An equation must always balance - whatever is to the left of the equals sign has the same value as whatever is to the right of the equals sign. We can see how this works when we look at this addition equation.
The three laws of arithmetic

An equation must always follow the three laws of arithmetic. We looked at how these rules work with real numbers on pages 154-55. We can also write the same laws using algebra if we replace the numbers with letters.

The commutative law

This law tells us that numbers can be added or multiplied in any order and the answer will always be the same. We can see how the commutative law works with this addition calculation, and then write the law using algebra.

WRITING EQUATIONS WITH ALGEBRA

In algebra, we use some special words and phrases. We also write equations slightly differently compared with when we're using numbers.

In algebra, a number that we do not know yet can called a term.

Two or more terms separated by a maths sign is called an expression.
be represented by a letter. This is called a variable.

Instead of writing $a \times b$, we simply write $a b$. We leave out the multiplication sign because it looks too much $a b$ like the letter x .

When we multiply numbers and letters, we write the number first.

A number, a letter, or a combination of both is

2

The associative law

Remember, brackets tell us which part of a calculation to do first. This law tells us that when we're adding or multiplying, it doesn't matter where we put the brackets - the answer won't change. Take a look at this addition calculation.

Add the numbers within the brackets, then add 6 to get 13 -

WRITING WITH NUMBERS

WRITING WITH ALGEBRA

The distributive law

This is a law about multiplication. It says that adding a group of numbers together and then multiplying them by another number is the same as doing each multiplication separately and then adding them. Here's an example of how this law works.

Add the numbers within the brackets, then multiply the answer by 5...

Multiply the numbers within the brackets, then add the answers
$5 \times(2+4)=(5 \times 2)+(5 \times 4)$

WRITING WITH NUMBERS
$a(b+c)=a b+a c$

WRITING WITH ALGEBRA

Solving equations

An equation can be rearranged to find the value of an unknown number, or variable.

Simple equations

In algebra, a letter or a symbol represents the variable.
We already know that the two sides of an equation must always balance. So, if the variable is on its own

It doesn't matter whether a shape or a letter represents the variable. on one side of the equals sign, we can find its value by simply carrying out the calculation on the other side.

Equations with symbols

Here we have two equations with a shape representing the unknown values. To find the answers we simply multiply or divide.

Equations with letters

In these examples, letters are used to represent the unknown values. The equations are solved in the same way. We just follow the maths sign.

REAL WORLD MATHS

Everyday algebra

We use algebra every day without realizing it. For example, if we want to buy three bottles of juice, two boxes of cereal, and six apples, we can calculate the amount using an algebraic equation as shown here.

$$
a=£ 2
$$

$$
c=50 p
$$

(2) Now replace the letters with the prices as follows:
$(3 \times £ 2)+(2 \times £ 1)+(6 \times 50 \mathrm{p})=£ 11$

Rearranging equations

Finding the value of a variable is harder if the variable is mixed with other terms on one side of an equation. When this happens, we need to rearrange the equation so that the variable is by itself on one side of the equals sign. The key to solving the equation is to make sure it always balances.

Let's look at this equation. We can solve it in simple stages so that we can isolate the letter b and find its value.

2
Start by subtracting 25 from both sides and rewrite the equation. We know that 25 minus 25 equals zero. We say that the two 25 s cancel each other out.

3
We are left with the lefter b on one side of the equals sign. We can now find its value by working out the calculation on the right of the equals sign.When we work out $46-25$, we are left with 21 . So, the value of b is 21 .We can check our answer by substituting 21 for the letter in the original equation.

$$
+25-25=46-25
$$

The variable is now the subject of the equation $b=46-25$ $b=21$

Both sides of the equation balance

TRY IT OUT

Missing values

Can you simplify these equations to find the missing values?
(1) $73+b=105$
(3) $i-34=19$
(2) $42=6 \times \square$ (4) $7=\Delta \div 3$

Formulas and sequences

A sequence is a list of numbers that follows a pattern (see pages 14-17).
By using a formula to write a rule for a sequence, we can work out the value of any term in the sequence without having to write out the whole list.

Number patterns

A number sequence follows a particular pattern, or rule.

Each number in a sequence is called a term. The first number in a sequence is called the first term, the second number is called the second term, and so on.

In this sequence, each term is 2 more than the previous term

The nth term

In algebra, the value of an unknown term in a sequence is known as the nth term - the " n " stands for the unknown value. We can write a formula called a general term of the sequence to work out the value of any term.

The unknown term is called the nth term

Simple sequences

To find the formula for any sequence, we need to look at the pattern. Some sequences have an obvious pattern, so we can easily find the rule and write it as a formula.

The rule is multiply the term by 4 .

This sequence is made up of the multiples of 4 . So, we can say the nth term is $4 \times \mathrm{n}$. In algebra, we write this as 4 n .

So, to find the value of the 30th term for example, we simply replace n in the formula with 30 and perform the calculation $4 \times 30=120$.

Two-step formulas

Some sequences will follow two steps such as multiplying and subtracting, or multiplying and adding.

The rule is multiply the term by 5 , then subtract 1

The formula for this sequence is $5 n-1$.
So, to find any term in the sequence, we have to perform a multiplication followed by a subtraction.

To find the 50th term in the sequence, for example, we replace n in the formula with 50 . Then we can write $5 \times 50-1=249$. So, the 50th term is 249.

TRY IT OUT

Finding terms

The formula to work out the nth term in this sequence is $6 n+2$. Can you continue the sequence and apply the formula?

Answers on page 320

Write the next
five numbers in this sequence.

Calculate the value of the 40th term.

Formulas

A formula is a rule for finding out the value of something. We write a formula using a combination of mathematical signs and letters to represent numbers or quantities.

In a formula, we can use letters instead of writing out all the words.

Writing a formula

A formula is like a recipe, except that in a formula we use signs and letters instead of words. A formula usually has three parts: a subject, an equals sign, and a combination of letters and numbers containing the recipe's instructions. Let's look at one of the simplest formulas, for finding the area of a rectangle. The formula is Area $=$ length \times width. Using algebra, we can write this as $\mathrm{A}=\mathrm{I} \mathrm{w}$.

Using letters

Formulas use letters instead of words, so we need to know what the different letters stand for. Here are the letters we use to solve mathematical problems that involve measurement.

$$
\begin{gathered}
A=\text { area } \\
P=\text { perimeter } \\
V=\text { volume } \\
I=\text { length } \\
w=\text { width } \\
b=\text { base } \\
h=\text { height }
\end{gathered}
$$

Using a formula

We use formulas in maths to find actual values. We can find the value of a formula's subject if we know the values of the variables on the other side of the equals sign.

The area is the space occupied by the swimming pool

We start by replacing
the letters $(A=l w)$ with the actual measurements. So, we have $A=5 \times 3$.
? The length when multiplied by the width gives us 15 . So, the area of this rectangular swimming pool is $15 \mathrm{~m}^{2}$.

Common formulas

Here are some formulas you will need to know for finding the area, perimeter, and volume of some common shapes.

$\underset{\text { Ariangle of } a}{\text { Ar }}=1 / 2 b h$

$\underset{\text { parallelogram }}{\text { Area of } a}=b h$

Glossary

acute angle An angle that is less than 90 degrees.
adjacent Next to each other, such as two angles or sides of a shape.
algebra The use of letters or other symbols to stand for unknown numbers when making calculations.
angle A measure of the amount of turn from one direction to another. You can also think of it as the difference in direction between two lines meeting at a point. Angles are measured in degrees.
See degree.
anticlockwise Going round in the opposite direction to a clock's hands.
apex The tip or pointed top of any shape.
arc A curved line that forms a part of the circumference of a circle.
area The amount of space inside any 2D shape. Area is measured in square units, such as square metres.
associative law A law saying that if you add, for example, $1+2+3$, it doesn't matter whether you add the $1+2$ first or the $2+3$ first. The law works for addition and multiplication, but not subtraction or division.
asymmetrical A shape with no reflective or rotational symmetry is asymmetrical.
average The typical or middle value of a set of data. There are different kinds of averages - see mean, median, and mode.
axis (plural axes) (1) One of the two main lines on a grid, used to measure the position of points, lines, and shapes. See also x axis, y axis. (2) An axis of symmetry is another name for a line of symmetry.
bar chart A diagram showing data as rectangular bars of different lengths or heights.
base The bottom edge of a shape, if you imagine it sitting on a surface.
block graph A diagram that shows data as stacks of square blocks.
brackets Symbols such as (1) and [], used to surround numbers. They help show you which calculations you should do first.
capacity The amount of space inside a container.

Carroll diagram A diagram that is used to sort data into different boxes.

Celsius scale A scale of temperature. Water boils at 100 degrees on this scale.
centigrade scale Another name for the Celsius scale.
chord A straight line that cuts across a circle but doesn't go through the centre.
circumference The distance all the way round the outside of a circle.
clockwise Going round in the same direction as a clock's hands.

common denominator

A term used when two or more fractions have the same lower number. See
denominator.
common factor A factor that two or more numbers share. See factor.
common multiple A number that is a multiple of two or more different numbers. For example, 24 is a multiple of 3 as well as of 4 , and so is a common multiple of these numbers. See multiple.
commutative law A law that says that, for example, $1+2$ is the same as $2+1$, and the order the numbers are in doesn't matter. It works for addition and multiplication, but not subtraction or division.
compass (l) An instrument that shows the direction of north, as well as other directions. (2) A pair of compasses is an instrument used to draw circles and parts of circles.
cone A 3D shape with a circular base and a side that narrows upwards to its apex. See apex
congruent Geometrical shapes that have the same size and shape.
conversion factor A number you multiply or divide by to
change a measurement from one kind of unit to another. For example, if you've measured a length in metres and need to know it in feet, you have to multiply by 3.3 .
coordinates Pairs of numbers that describe the position of a point, line, or shape on a grid or the position of something on a map.
cross section A new face made by cutting a shape parallel to one of its ends. See face.
cube number When you multiply a number by itself, and then by itself again, the result is called a cube number.
cubic unit Any unit, such as a cubic centimetre, for measuring the volume of a 3D shape. See unit.
cuboid A box-like shape with six faces, where opposite faces are identical rectangles.
cylinder A 3D shape with two identical circular ends joined by one curved surface. A tin can is an example.
data Any information that has been collected and can be compared.
decimal Relating to the number 10 land to tenths, hundredths, and so on). A decimal fraction lalso called a decimall is written using a dot called a decimal point. The numbers to the right of the dot are tenths, hundredths, and so on. For example, a quarter $(1 / 4)$ as a decimal is 0.25 , which means 0 ones, 2 tenths, and 5 hundredths.
degree (symbol ${ }^{\circ}$ (1) A measure of the size of a turn or angle. A full turn is 360 degrees. (2) A unit on a temperature scale.
denominator The lower number in a fraction, such as the 4 in $3 / 4$.
diagonal (1) A straight line that isn't vertical or horizontal.
(2) Inside a shape, a diagonal is any line joining two corners, or vertices, that aren't adjacent.
diameter A straight line from one side of a circle or sphere to the other that goes through the centre.
digit A single number from 0 to 9 . Digits also make up larger numbers. For example, 58 is made up of the digits 5 and 8.
distributive law The law that says, for example, $2 \times(3+4)$ is the same as $(2 \times 3)+(2 \times 4)$.
dividend The number to be divided in a division calculation.
divisor The number you are dividing by in a division calculation.
equation A statement in maths that something equals something else, for example $2+2=4$
equilateral triangle A triangle with all three sides and all three angles the same.
equivalent fraction A fraction that is the same as another fraction though it's written in a different way. For example, $2 / 4$ is equal to $1 / 2$.
estimating Finding an answer that's close to the correct answer, often by rounding one or more numbers up or down.
face Any flat surface of a 3D shape.
factor A whole number that divides exactly into another number. For example, 4 and 6 are factors of 12 .
factor pair Any two numbers that make a larger number when multiplied together.

Fahrenheit scale A scale of temperature. Water boils at 212 degrees on this scale.
formula A rule or statement that is written using mathematical symbols.
fraction A number that is not a whole number, for example $1 / 2,1 / 4$, or $10 / 3$.
frequency (1) How often something happens. (2)
In statistics, how many individuals or things have a particular feature in common.
gram (g) A unit of mass, a thousandth of a kilogram.

greatest common factor

Another name for highest common factor.
grid method A way of multiplying using a grid drawn on paper.

highest common factor

(HCF) The highest factor that two or more numbers have in common. For example, 8 is the highest common factor of 24 and 32 .
horizontal Level and going from one side to the other, rather than up and down.
image A shape that's the mirror-image reflection of another shape, called the pre-image.
imperial units Traditional measuring units such as the foot, mile, gallon, and ounce. In science and maths, they have been replaced by metric units, which are easier to calculate with.

improper fraction A

fraction that is greater than 1 , for example $5 / 2$, which can also be written as the mixed number $2 \frac{1}{2}$. See mixed number.
intersect To meet or cross over (used of lines and shapes).
isosceles triangle A triangle with two sides the same length and two angles the same size.
kilogram (kg) The main unit of mass in the metric system, equal to 1000 grams.
kilometre (km) A metric unit of length, equal to 1000 metres.
lattice method A method of multiplying using a grid with diagonal lines on it.
line graph A diagram that shows data as points joined by straight lines. It's good for showing how measurements such as temperature can change over time.
line of reflection Also called the mirror line, a line exactly midway between an object and its reflection.
line of symmetry An imaginary line through a 2D shape that divides it into two identical halves. Some shapes have no line of symmetry, while others have several.
litre (l) A metric unit for measuring capacity.
long division A way of dividing by larger numbers that involves doing the calculation in stages.
long multiplication A written method for multiplying numbers with two or more digits. It involves doing the calculation in stages.

lowest common

 denominator The lowest common multiple of the denominators of different fractions. See denominator.
lowest common multiple

The lowest number that is a common multiple of other given numbers. For example, 24 is a common multiple of 2,4 , and 6 , but 12 is their lowest common multiple. See multiple and common multiple.
mass The amount of matter in an object. See weight.
mean An average found by adding up the values in a set of data and dividing by the number of values.
median The middle value of a set of data, when the values are put in order from lowest to highest.
metre (\mathbf{m}) The main unit of length in the metric system, equal to 100 centimetres.
metric system A system
of standard measuring units including the metre (for measuring length) and the kilogram (for measuring mass). Different measurements can be compared easily using these units by multiplying or dividing by 10,100 , or 1000.
milligram (mg) A metric unit of mass that equals a thousandth of a gram.
millilitre ($\mathbf{m l}$) A metric unit of capacity that equals a thousandth of a litre.
millimetre ($\mathbf{m m}$) A metric unit of length that equals one-thousandth of a metre.
mixed number A number that is partly a whole number and partly a fraction, such as 212 .
mode The value that occurs most often in a set of data.
multiple Any number that's the result of multiplying two whole numbers together.
negative number A number less than zero: for example $-1,-2,-3$, and so on.
net A flat shape that can be folded up to make a particular 3D shape.
non-unit fraction A fraction with a numerator greater than one, for example $3 / 4$.
number A value used for counting and calculating. Numbers can be positive or negative, and include whole numbers and fractions. See negative number, positive number.
number line A horizontal line with numbers written on it, used for counting and calculating. Lowest numbers are on the left, highest ones on the right.
numeral One of the ten symbols from 0 to 9 that are used to make up all numbers. Roman numerals are different, and use capital letters such as I, V, and X.
numerator The upper number in a fraction, such as the 3 in $3 / 4$.
obtuse angle An angle between 90 and 180 degrees.
operator A symbol that represents something you do to numbers, for example + (add) or \times (multiply).
opposite angles The angles on opposite sides where two lines intersect, or cross over each other. Opposite angles are equal.
origin The point where the x and y axes of a grid intersect.
parallel Running side by side without getting closer or further apart.
parallelogram A type of quadrilateral whose opposite sides are parallel and equal to each other.
partitioning Breaking numbers down into others that are easier to work with. For example, 36 can be partitioned into $30+6$.
percentage (\%) A proportion expressed as a fraction of 100 - for example, 25 per cent (25%) is the same as ${ }^{25} / 100$.
perimeter The distance around the edge of a shape.
perpendicular Something is perpendicular when it is at right angles to something else.
pictogram A diagram that shows data as rows or columns of small pictures.
pie chart A diagram that shows data as "slices" (sectors) of a circle.
place-value system Our standard way of writing numbers, where the value of each digit in the number depends on its position within that number. For example, the 2 in 120 has a place value of twenty, but in 210 it stands for two hundred.
polygon Any 2D shape with three or more straight sides, such as a triangle or a parallelogram.
polyhedron Any 3D shape whose faces are polygons.
positive number A number greater than zero.
prime factor A factor that is also a prime number. See factor.
prime number A whole number greater than 1 that can't be divided by any whole number except itself and 1 .
prism A 3D shape whose ends are two identical polygons. It is the same size and shape all along its length.
probability The chance of something happening or being true.
product The number you get when you multiply other numbers together.
proper fraction A fraction whose value is less than 1 , where the numerator is less than the denominator, for example $2 / 3$.
proportion The relative size of part of something, compared with the whole.
protractor A tool, usually made of flat, see-through plastic, for measuring and drawing angles.
quadrant A quarter of a grid when the grid is divided by x and y axes.
quadrilateral A 2D shape with four straight sides.
quotient The answer you get when you divide one number by another.
radius Any straight line from the centre of a circle to its circumference.
range The spread of values in a set of data, from the lowest to the highest.
ratio Ratio compares one number or amount with another. It's written as two numbers, separated by a colon (:).
rectangle A four-sided $2 D$ shape where opposite sides are the same length and all the angles are 90 degrees.
reflection A type of transformation that produces a mirror image of the original object. See transformation.
reflective symmetry A shape has reflective symmetry if you can draw a line through it to make two halves that are mirror images of each other.

reflex angle An angle

 between 180 and 360 degrees.remainder The number that is left over when one number doesn't divide into another exactly.
rhombus A quadrilateral with all four sides the same length. A rhombus is a special kind of parallelogram, in which all the sides are of equal length. See parallelogram.
right angle An angle of 90 degrees (a quarter turn), such as the angle between vertical and horizontal lines.

right-angled triangle

A triangle where one of the angles is a right angle.
rotation Turning around a central point or line.
rotational symmetry A shape has rotational symmetry if it can be turned around a point until it fits exactly into its original outline.
rounding Changing a number to a number, such as a multiple of 10 or 100 , that's close to it in value and makes it easier to work with.
scalene triangle A triangle where none of the sides or angles are the same size.
sector A slice of a circle similar in shape to a slice of cake. Its edges are made up of two radii and an arc.
segment (1) Part of a line.
(2) In a circle, the area between a chord and the circumference.
sequence An arrangement of numbers one after the other that follows a set pattern, called a rule.
set A collection or group of things, such as words, numbers, or objects.
significant digits The digits of a number that affect its value the most.
simplify (a fraction) To put a fraction into its simplest form. For example, you can simplify $14 / 21$ to $2 / 3$.
solid In geometry, a term for any 3D shape, including a hollow one.
sphere A round, ball-shaped 3D shape, where every point on its surface is the same distance from the centre.
square A four-sided 2D shape where all the sides are the same length and all the angles are 90 degrees. A square is a special kind of rectangle. See rectangle.
square number if you multiply a number by itself, the result is called a square number, for example $4 \times 4=16$
square unit Any unit for measuring the size of a flat area. See unit.
straight angle An angle of exactly 180 degrees.
subset A set that is part of a larger set. See set.
symmetry A shape or object has symmetry if it looks exactly the same after a reflection or rotation.
tally marks Lines drawn to help record how many things you've counted.
tangent A straight line that just touches a curve or the circumference of a circle at a single point.

three-dimensional (3D)

Having length, width, and depth. All solid objects are three-dimensional - even very thin paper.
ton/tonne A tonne is a metric unit of mass equal to a thousand kilograms: it is also called a metric ton. A ton is also a traditional imperial unit, which is almost the same size as a tonne.
transformation Changing the size or position of a shape or object by reflection, rotation, or translation.
translation Changing the position of a shape or object without rotating it or changing its size or shape.
trapezium A quadrilateral with one pair of sides parallel, also called a trapezoid.
triangle A 2D shape with three straight sides and three angles.
turn To move round a fixed point, such as hands moving on a clock.

two-dimensional (2D)

Having length and width, or length and height, but no thickness.
unit A standard size used for measuring, such as the metre (for length) or the gram (for mass).
unit fraction A fraction in which the numerator is 1 , for example $1 / 3$.
universal set The set that includes all the data you're investigating. See set.
value The amount or size of something.
variable An unknown number in an equation. In algebra, a variable is usually represented by a letter or a shape.

Venn diagram A diagram that shows sets of data as overlapping circles. The overlaps show what the sets have in common.
vertex (plural vertices)
An angled corner of a 2D or 3D shape.
vertical Going in a straight up and down direction.
volume The three-dimensional size of an object.
weight A measurement of the force of gravity acting on an object. See mass.
whole number Any number such as 8,36 or, 5971 that is not a fraction.
x axis The horizontal line that is used to measure the position of points plotted on a grid or graph.
y axis The vertical line that is used to measure the position of points on a grid or graph.

Index

A

abacus 78
absolute zero 186
acute angles 233
in triangles 241
addition (adding) 78-87
associative law 154
column 86-7
commutative law 15
complimentary 95
decimals 62
expanded column 84-5
facts (pairs) 82
fractions 52
mass 184
order of operations 152, 153
partitioning for 83
positive and negative
numbers 18, 19
repeated 99
shopkeeper's 93, 95
temperature 187
using a number grid 81
using a number line 80
algebra 301-09
equations 302-05
formulas 306-07, 308-09
sequences 306-07
ancient Egyptian numerals 10-11
angle of rotation 262, 263
angles 230, 231
acute 233
around a point 235
compass directions 254
drawing 238
inside triangles 214, 215, 240-43
measuring 238, 239
obtuse 233
on a straight line 234, 237
opposite 236-37
polygons 212, 213, 218, 246,
247
quadrilaterals $216,217,218$,
219, 244-45
reflex 233, 239
right 232, 233
straight 232, 233
apex
pyramid 225
triangle 214
approximately equal symbol 24
arcs 216
circles 220, 221
angles 230
area 168-77
complex shapes 174-75
estimating 169
circles 220, 221
formulas for 170-71, 309
parallelograms 173
perimeter and 176-77
triangles 172
arithmetic laws 154-55
and equations 302
arms of angles 230
array 98,101
open 111, 112
ascending order 23
associative law 154, 303
asymmetry 257
averages 276, 277, 281
axis (axes)
bar charts 286, 287
coordinates 248, 249, 250
line graphs 288,289 ,
290, 291
of reflection 260
of symmetry 256

B

Babylonian numerals 10-11
balancing equations 302
bar charts (graphs) 269, 285, 286-87
base of a triangle 214
bearings (compass) 254, 255
block graphs 284
BODMAS (BIDMAS) 152, 153
brackets
associative law 303
coordinates 248
equations 303
negative numbers 18
order of operations 152,
153, 155
C
calculation 77-157
addition 78-87
arithmetic laws 152-55
checking 25
division 128-151
length 162-63
mass 184-85
money 200-01
multiplication 98-127
order of operations for 152-53
subtraction 88-97
temperature 187
calculation (continued)
time 196-97
using a calculator 156-57
calculator
abacus 78
using a 156-57
calendars 195
capacity 178
imperial units 190
cardinal compass points 254
Carroll diagrams 272-73
carrying over 86-7
Celsius (${ }^{\circ} \mathrm{C}$) 186, 187
centigrade 186
centimetres (cm) 160, 161
centre of a circle 220
centre of rotation 262, 263
centre of rotational symmetry 258, 259
chance (probability) 296
change (money) 201
charts 269
bar 285, 286-87
pie 292-93, 294-95
tally 284
chord of a circle 220, 221
circles 220-21
concentric 209
lines of symmetry 256, 257
non-polygons 212
order of rotational symmetry 259
pie charts 292, 293
Venn diagrams 274
circumference 220, 221
measurement of 221
clocks 11, 192
coins 199
collecting data 268,270
column addition 86-7 expanded 84-5
column subtraction 96-7 expanded 94-5
common denominator 51
common factors 29
highest 46
common multiples 30, 51
commutative calculations addition 78
multiplication 98
commutative law 154, 302
comparing decimals 60
comparing numbers 20-1
comparison symbols 20, 21
compass directions 254-55
compass points 254
compasses (for drawing circles) 294, 295
concentric circles 209
cones 224
congruent triangles 214
conversion factor (imperial units to metric units) 189
conversion graph 289
converting units
of currency 198, 201
of length 161, 163
of mass 182, 184-85
of time 193, 195
of volume 178, 179
coordinates 248, 249
drawing a polygon 251
position and direction 252 , 253
positive and negative 250, 251
counting
with multiples 102-03
quick 24
counting all (adding) 79
counting back (subtraction) 88, 89, 92
counting on (adding) 79
counting up (subtraction) 92
criteria (Carroll diagrams) 272
cross sections of prisms 226
cube numbers 39
cubes (3D shapes) 225
volume 180, 181
nets of 228
cubic units 180
cuboids 224, 225
nets of 229
prisms 227
volume of 181, 309
currencies 198
curved lines 204
circles 220
cylinder 224
net of 229

D

data
averages 276
Carroll diagrams 272-73
charts 269
graphs 269
pictograms 282
tables 269
tally marks 270, 271
Venn diagrams 274-75
data collection 268, 270
data handling 268-69
data presentation 269, 271
bar charts 285
block graphs 284
line graphs 288-89
pie charts 292-93, 294
pictograms 284
dates 194-95
Roman numerals for 11
days 194, 195
decagon 218
decimal currency 198
decimal numbers 58-9
adding 62, 87
comparing 60
dividing 150-51
fractions 74
multiplying 124-25, 127
ordering 60
percentages 65
probability 298, 299
remainders 148, 149
rounding 61
subtracting 63
decimal point $13,58,59$
degrees (angles) 231
measuring 238
degrees Celsius $\left({ }^{\circ} \mathrm{C}\right) 186,187$
degrees centigrade 186
degrees Fahrenheit (${ }^{\circ}$ F) 186, 187
denominator 41, 149
common 51
comparing fractions 48
equivalent fractions 44, 45
finding fractions 47
simplifying fractions 46
unit fractions 49
descending order 23
diagonal lines 206-07, 210, 211
diameter of a circle 220, 221
dice 299
difference (subtraction) 88, 89, 92
digits 10
place value 12,13
rounding up and down 27
significant 27
direction
compass 254-55
lines of 205
position and 252-53
distance 160, 161
calculations with length 162, 163
distributive law 155, 303
dividend 130, 131
dividing by 10,100 , and 1000 136
divisibility,
checking for 135
division 128-29, 136
decimals 150-51
equivalent fractions 45
expanded long 144-45
expanded short 140-41, 148
factor pairs 134
fractions 56-7
division (continued)
long division 146-47
by multiples of 10137
with multiples 130
order of operations 152, 153
partitioning for 138-39
short division 142-43
division grid 131
division tables 132-33
divisor 130, 131
dodecagon 219
dodecahedron 225
E
edge (three-dimensional shapes) 222, 223, 224, 225
Egyptian numerals 10-11
elements of sets 274
equals 20
equations 302
formulas 308, 309
symbol for $21,24,78,88$
equations 302-03
equilateral triangles 213, 215, 240
finding the perimeter of 167
lines of symmetry 257
polyhedrons 225
rotational symmetry 259
equivalent fractions 44-5, 46
estimating 24-5
angles 239
area 169
using a calculator 157
Euclid 33
expanded column addition 84-5
expanded column subtraction 94-5
expanded long division 144-45
expanded long multiplication 118-19
expanded short division 140-41, 148
expanded short multiplication 114-15
expression (algebra) 303

F

faces
prism 226
three-dimensional (3D) shapes

222, 223, 224, 225
factor pairs 28, 101
dividing with 134
factor trees 35
factors 28-9, 31
highest common 46
factors (continued)
multiplication grid 106
prime 34-5
scale 73
Fahrenheit scale 186
feet 189, 190
Fibonacci sequence 17
finding fractions 47
finding the difference
(subtraction) 88, 89, 92
expanded column
subtraction 94, 95
formulas 306-09
angles inside polygons 247
area 170-71
areas of parallelograms 173
areas of triangles 172
perimeter 166-67
volume 181
pie charts 294
probability 298
fraction wall 44
fractions 40-1
adding 52
comparing 48
comparing units 49
decimals 59, 74, 75
dividing 56-7
equivalent 44-5, 46
finding 47
improper 42-3
multiplying 54-5
non-unit 40-1, 50, 55
percentages $64,65,67$, 74, 75
pie charts 293
probability 296, 298, 299
proportion 70, 74
ratio 74
remainders 148, 149
scaling 100
simplifying 46
subtracting 53
unit 40-1
frequency chart 283
frequency tables 269, 271, 286, 294

G

gallons 189, 190
general terms (sequences) 306
geoboard 265
geodesic dome 240
geometry 203-65
angles 230-47
circles 220-21
coordinates 247-53
compass points 254-55
lines 204-11
nets 228-29
geometry (continued)
polygons 213, 218-19,
246-47, 251
prisms 226-27
quadrilaterals 216-17, 244, 245
reflection 260-61
rotation 262-63
symmetry 256-59
three-dimensional (3D)
shapes 222-29
translation 264-65
triangles 214-15, 240-41, 242-43
two-dimensional (2D) shapes 212-21
using a protractor 238-39
grams (g) 182
graphs
axes 288, 289, 290, 291
bar (charts) 269, 285, 286-87
block 284
conversion 289
line 288-89, 290-91
quadrants of 250,251
weight 183
greater than symbol 20, 21
grid
adding 81, 86
column addition 86
coordinates 248, 249, 250, 251
division 131
equivalent fractions 45
multiplication 45, 106, 112-13, 131
number 81
partitioning 11
place value 86
position and direction 252
translation 265

H

height
measuring 160, 161
three-dimensional (3D)
shapes 222
two-dimensional (2D) shapes 212
hemispheres 224
heptagons 218
angles inside 246, 247
hexagonal prism 227
hexagons 212, 213
angles inside 246
diagonals 207
lines of symmetry 257
naming 218
order of rotational symmetry 259
highest common factor 46
Hindu-Arabic numerals 10-11
honeycomb cells 218
horizon 205
horizontal lines 205, 206, 210
of a grid 248
hours 192, 193
hundreds
place value 12,13
Roman numerals 10

I

icosagon 219
icosahedron 225
image 260, 261
imperial units 188-91
converting to metric units 189
improper fractions 42-3
inches 189, 190
indices 152
intersection 275
lines 211, 236, 237
invention of numbers 10
inverse squares 38
irregular decagon 218
irregular dodecagon 219
irregular heptagon 218
irregular hexagon 218
irregular icosagon 219
irregular nonagon 219
irregular octagon 219
irregular pentagon 219
irregular quadrilateral 219
irregular triangle 218
isosceles trapezium 217
isosceles triangles 215, 241
finding the perimeter of 167
lines of symmetry in 257

Kelvin scale 186
kilogram (kg) units 182
kilometre (km) units 160, 161, 163
graph to convert to miles 289
kite shape 217
lattice method of multiplication 126-27
laws of arithmetic 154-55
for equations 302
length 160-61 calculations with 162-63
imperial units of 189, 190-91 lines 204
perimeter 164, 165
three-dimensional (3D)
shapes 222
two-dimensional (2D) shapes 212
less than symbol 21
letters in formulas 308
line graphs 288-89, 290-91
line of reflection 260,261
line of symmetry 256, 257
lines 204
curved 220
diagonal (oblique) 206-07, 210
horizontal 205, 210, 211
intersecting 236, 237
parallel 208-09
perpendicular 210-11
polygons 212
vertical 205, 210, 211
litre (I) units 178, 179
long division 146-47
expanded 144-45
long multiplication 120-23
expanded 118-19
of decimals 124-25
lowest common multiples 31

M

maps
compass directions 254
coordinates 248, 249
position and direction 252 , 253
mass 182
calculating 184-85
imperial units of 188, 190-91
weight and 183
matter (material) 182, 183
mean $276,277,278,280,281$
measuring angles 238, 239
measuring area 168
measuring length 160-67
calculations with 162
perimeters 164-67
measuring mass 182
median 276, 278, 280, 281
members of sets 274
metre (m) units 160, 161, 163
metric units
converting to imperial units 189
equivalent measures 191
of length 160
of mass 182
miles 189, 190
miles to kilometres conversion graph 289
milligram (mg) units 182
millilitre (ml) units 178, 179
millimetre (mm) units 160, 161
minus symbol 88
minutes 192, 193
mirror line 256, 260
mixed numbers 42-3
mode (modal value) 276, 279, 280, 281
money 198, 199 calculating with 200-01
months 194, 195
multiples 30-1
counting in 102-03
dividing with 130
rewriting fractions with 51
multiplication 98-127
associative law 154, 155
by 1010,108
by 10,100 , and 1000108
commutative law 154
with decimals 124-25, 127
distributive law 155, 303
division and 129
equivalent fractions 45
expanded long 118-19
expanded short 114-15
fractions 54-5
grid method of 112-13
lattice method of 126-27
long multiplication 120-23, 124-25
order of operations 152, 153
partitioning for 110-11
patterns in 107
scaling 100
short multiplication 116-17
strategies for 107
tables 104-05, 106
multiplication grid 106, 112-13
for division 131
equivalent fractions 45

N

navigation
compass directions 255
coordinates 253
negative coordinates 250, 251
negative numbers 18-9
temperature 186
nets 228-29
Newtons (N) 183
nonagon 219
non-polygons 212
non-unit fractions 40-1
comparison of 50
multiplication of 55
notes (money) 199
nth term 306
number bonds 82
number grid 81
number lines 18
for addition 80,88
for dividing 130
for subtraction $88,89,92$
for multiples 30, 31, 102-03
for partitioning 110
number lines (continued)
positive and negative
numbers 18, 19
for rounding up and rounding down 26
temperature 186, 187
number symbols 10-11
numbers 11-23
comparing 20-21
cube roots of 38-9
cubes of 39
decimal 56-63
estimating 24-5
factors of 28-9, 34-5
fractions of 40-55, 74-5
mixed 42-3
multiples of $30-1$
negative 18-9
ordering 22-3
patterns of 14-5
percentages of 62-7
place value 12-3
positive 18-9
prime 32-3, 34, 35
prime factors of 34-5
proportion 70-1
ratio 68-9
rounding 25, 26-7
scaling 72-3
sequences of 14-7
shapes of 16-7
simplifying 25
square 36-7, 38
square roots of 38-9
symbols for 10-11
numerals 10
numerator 41, 149
comparing fractions 48
equivalent fractions 44, 45
finding fractions 47
simplifying fractions 46
unit fractions 49

0

oblique lines 206
obtuse angles 233
in triangles 241
octagon 219
angles inside an 246
octahedron 225
one-dimensional lines 204
ones
place value 12, 13
Roman numerals for 10
open array 111,112
opposite angles 236-37
order of operations 152-53
order of rotational symmetry 259
ordering decimals 60
ordering numbers 22-3
ordinal compass points 254
origin 248,249
ounces 188, 191

P

parallel lines 205, 208-09
parallelograms 216
angles inside 244
area 173,309
perimeter 166
partitioning for addition 83,85
partitioning for division 138-39
partitioning for multiplication 110-11
partitioning for subtraction 91, 92
patterns
multiplication 107
number 14-5
tessellation 264
pence 198
pentagonal number sequence 17
pentagonal prism 227
pentagons 219
angles inside 246, 247
dodecahedron 225
lines of symmetry 257
percentage change 68-9
percentages 64-5
finding 66-7
fractions 74
pie charts 293
probability 298, 299
proportion and 70
perimeter 164-65
area and 176-77
circles 221
formulas for 166-67, 309
perpendicular lines 210-11
pictograms (pictographs) 282-83
pie charts 292-93, 294-95
pints 189, 190
place holder (zero) 11, 13
place-value grid 86
place value 12-3
column addition 86
division 136
expanded column addition 84-5
multiplying by 10, 100, and 1000108
ordering numbers 22
rounding decimals 61
rounding up and down 26 , 27
significant digits 21
Plato 225
Platonic solids 225
plotting points using
coordinates 249, 250, 251
plus sign 78
points
angles around 235
cardinal 254
polygons 212
angles inside 246, 247
irregular 213
naming 218-19
polyhedrons 225
prisms 227
quadrilaterals 216-17, 244
regular 213
triangle 214-15
using coordinates to draw 251
polyhedrons 225
prisms 226-27
position and direction 252-53
positive coordinates 250, 251
positive numbers 18-9
pounds (mass) 188, 191
pounds (money) 198
powers (indices) 152
pre-image 260, 261
prime factors 34-5
prime numbers 32-3, 34, 35
prisms 226-27
triangular 229
probability $267,296-99$
product 98
proportion 71
fractions 74
scaling 72
protractor 236, 294, 295
using a 238-39
pyramids
square-based 225, 229
triangular-based 224

Q

quadrants of a graph 250, 251
quadrilateral polygon 213
quadrilaterals 216-17, 219
angles inside 244-45
areas 173
quick counting 24
quotient 131

R

radius (radii) 220, 221
range of values 280, 281
ratio 70
fractions and 74
scaling 73
raw data 268
rectangles 216, 217
angles inside 244
area $168,170,171$
lines of symmetry in 257
nets of 229
perimeter 164, 165, 166, 309
rectangular prism 227
reflection 260-61
reflective symmetry 256-57, 259
reflex angles 233
measuring 239
regular decagon 218
regular dodecagon 219
regular heptagon 218
regular hexagon 218
regular icosagon 219
regular nonagon 219
regular octagon 219
regular pentagon 219
regular polyhedron 225
regular quadrilateral 219
regular triangle 218, 240
remainders
converting 148-49
division 128, 130
partitioning 139
repeated addition 99
repeated subtraction 129
expanded short division 140
rhombus 216, 217
right-angled triangles 215, 240 area 172
right angles 232, 233
in squares 216
in triangles 241
perpendicular lines and 210, 211
Roman numerals 10-11
on clocks 192
rotation 262-63
angles of 230
rotational symmetry 258-59
rounding up and down 26-7
decimals 61
money 200
numbers 25
rules for sequences 14,15

S

scale
Celsius 186
Fahrenheit 186
Kelvin 186
probability 297
scale drawings 73
scale factors 73
scalene triangles 215,241
area 172
perimeter 167
scaling up and down 72-3
seconds (time) 192
sectors,
circles 220, 221
pie charts 293, 294, 295
segment 220, 221
sequences 306-07
cube numbers 39
Fibonacci 17
number 14-7
pentagonal numbers 17
series 14
sets of data 269, 272
averages 276
bar charts 285
block graphs 284
median 278
mode 279
numbers 273
pictograms 282
pie charts 293
range 280
Venn diagrams 274, 275
shapes
circles 220
number sequences 16-7
perimeters of 164
three-dimensional (3D) 222-25
two-dimensional (2D) 212, 213, 220
sharing 128
shopkeeper's addition 93, 95
short division 142-43
expanded 140-41, 148
short multiplication 116-17 expanded 114-15
sides
missing lengths 171
perimeters 164, 165
polygons 212, 213, 218
quadrilaterals 216, 217, 218, 219
triangles 214, 215
significant digits 21
ordering decimals 60
ordering numbers 22
rounding up and rounding down 27
simplifying fractions 46
simplifying numbers 25
slopes 205, 207
spheres 224
spiral shapes 17
square-based pyramid 225
net of 229
square numbers 36-7, 38
sequence of 16
square roots 38 order of operations 152
square units 168, 169
squares $213,216,217$
area 170
cubes and 225
perimeter 166, 309
nets of 228,229
order of rotational symmetry 259
statistics 267-99
averages 276, 281
bar charts 269, 285-87
block graphs 284
Carroll diagrams 272-73
data collection and
presentation 268-69
frequency tables 269, 271
line graphs 288-91
mean 277
median 276
mode 277
pictograms 282-83
pie charts 292-95
probability 296-99
range 280
tally marks 270
Venn diagrams 274-75
straight angle 232
straight lines 204, 206
subsets
data 269
numbers 273
pie charts 293
subtraction 88-97
column 96-7
decimals 63
division 129
expanded column 94-5
expanded short division 140
facts 90
fractions 53
mass 184
order of operations 152, 153
partitioning for 91,92
positive and negative
numbers
18, 19
repeated 129,140
shopkeeper's addition 93
temperature 187
using a number line for 92
subtraction facts 90
survey 268, 282, 284
symbols
addition 78
approximately equal 24
comparison 20, 21
degrees (angles) 231
equals $21,24,78,88$
symbols (continued)
equations 302
equivalent to 78
greater than 21
less than 21
minus 88
multiplication 98
numbers 10-11
parallel lines 208
percent 64
pictograms 282, 283
plus 78
ratio 70
reflective symmetry 256-57, 259
right angle 215, 232
rotational symmetry 258-59

T

tables 269
division 132-33
frequency 271, 294
multiplication 104-05, 106
square numbers 37
tabs 229
taking away (subtraction) 88
tally chart 284
tally marks 270, 271
tangent of a circle 220
temperature 186-87
tens
place value 12, 13
Roman numerals 10
tenths 13
term (algebra) 303
sequences $14,15,16,17$, 306
tessellation 264
tetrahedron 224, 225
thermometer 186, 187
thousands
place value 12, 13
Roman numerals 10
three-dimensional (3D) shapes 222-25
nets of 228-29
prisms 226-27
volume 179, 180
time 192-97
calculating with 196-97
clocks 192-93
measuring 192-95
reading the 193
tonnes 182
tons 188, 191
transformations
reflection 260
rotation 262
translation 264
translation 264-65
trapezium (trapezoid) 217
angles inside 244
drawing using coordinates 251
triangles 213, 214-15
angles inside 240-43
area 172,309
equilateral 257, 259
perimeter 167
inside quadrilaterals 245
isosceles 257
lines of symmetry 257
naming 218
nets of 229
order of rotational symmetry 259
prisms 226, 227, 229
polyhedrons 225
pyramids 225
translations 265
triangular-based pyramid 224
triangular number sequence 16
triangular prisms 226, 227
nets of 229
two-dimensional (2D) shapes 212
area 168
circles 220
faces 223
perimeter 166
nets of 228-29

U

union of sets 275
unit fractions 40-1
comparing 49
units
angles 231
capacity 178
imperial 188-91
length 160, 162, 163
mass 184-85
metric 188-91
money 198, 201
temperature 186
time 192, 196, 197
translation 265
universal set 275

V

variable (algebra) 303, 309
Venn diagrams 274-75
common multiples 30
vertex (vertices),
angles 230
measuring angles 238,239
pentagonal number sequence 17
polygons 212
quadrilaterals 216
vertex (continued)
three-dimensional (3D)
shapes $222,223,224,225$
triangles 214
vertical lines 205, 207, 210
grid 248
volume 179
formulas for 181, 309
imperial units of 189, 190-91
of solids 180

W

weather 187
weeks 194, 195
weight 183
width
measuring 160, 161
three-dimensional (3D)
shapes 222
two-dimensional (2D) shapes 212

X

x axis
bar charts 286, 287
coordinates 248, 249, 250
line graphs 288, 289, 290, 291
Y
y axis
bar charts 286, 287
coordinates 248, 249, 250
line graphs 288, 289, 290, 291
yards 189, 190
years 194, 195
Roman numerals 11
Z
zero
absolute 186
coordinates 250
place holder 11, 13
place value 12
positive and negative
numbers
18, 19
symbol 10,11

Answers

Numbers

$\begin{array}{lll}\text { pll } & 1998 & \text { 2) } M D C L X V I ~ a n d ~ M M X V ~\end{array}$
p15 1) 67,76 2) 24,28 3) 92,90
4) 15,0
p19 1) 10 2) -5 3) -2 4) 5
p21 1) $5123<10221$
2) $-2<3$
3) $71399>71000$
4) $20-5=11+4$
p23 Trevor 1, Bella 3, Buster 7, Jake 9, Anna 13, Uncle Dan 35, Mum 37, Dad 40, Grandpa 67, Grandma 68
p27 1) 170 cm 2) 200 cm
p31 multiples of 8: $16,32,48,56$, 64, 72, 144
multiples of 9: $18,27,36,72$, 81, 90, 108, 144
common multiples: 72, 144
p35 Here is one of the ways to complete the factor tree:

$\begin{array}{llll}\text { p38 } & \text { 1) } 100 & \text { 2) } 16 & 3) \\ 9\end{array}$
p47 18 chickens.
p51 Wook got the most right: he got 25/30 correct to Zeek's 24/30
p57 1) $1 / 12$ 2) $1 / 10$ 3) $1 / 21$ 4) $1 / 6$
p61 Twerg 17.24, Bloop 16.56, Glook 17.21, Kwonk 16.13, Zarg 16.01. Zarg's time is fastest.
p63 1) 4.1 2) 24.4 3) 31.8 4) 20.9
p65 1) 25% 2) 75% 3) 90%
p66 1) 60% 2) 50% 3) 40%
p67 1) 20 2) 55 3) 80
p69 1) $£ 100$ 2) $£ 35$ 3) $£ 13.50$
p73 The T. rex is $560 \mathrm{~cm}(5.6 \mathrm{~m})$ high and $1200 \mathrm{~cm}(12 \mathrm{~m})$ long.
$\begin{array}{lll}\text { p75 } & \text { 1) } 35 / 100 \\ \text { simplified to } 7 / 20 & 2) & 3 \%, 0.03\end{array}$ 3) $4 / 6$ simplified to $2 / 3$

Calculating

$\begin{array}{llll}\text { p82 } & \text { 1) } 100 & \text { 2) } 1400 & \text { 3) } 100\end{array} 1$ 5) 100 6) 10000

$\mathbf{p} 85$	11		
8	823	2) 1590	3

$\begin{array}{llll}\text { p87 } & 1 & 8156 & \text { 2) } 9194\end{array}$ 3) 71.84
$\begin{array}{llll}\mathbf{p 9 0} & \text { 1) } 800 & \text { 2) } 60 & \text { 3) } 70\end{array} \mathbf{4} 70$ 5) 0.02 6) 0.2
p91 377
p93 1) $£ 6.76$ 2) $£ 2.88$ 3) $£ 40.02$
$\begin{array}{llll}p 95 & 1) \\ 207 & 2) & 423 & 3) \\ 3593\end{array}$
$\begin{array}{llll}\mathbf{p 9 9} & 11 \\ 24 & \text { 2) } 56 & 3) 54 & \text { 4) } 65\end{array}$
p101 1) 1,$14 ; 2,7$
2) 1,$60 ; 2,30 ; 3,20 ; 4,15 ; 5,12 ; 6,10$
3) 1,$18 ; 2,9 ; 3,6$
4) 1,$35 ; 5,7$
5) 1,$24 ; 2,12 ; 3,8 ; 4,6$
p103 1) 28, 35, 42
2) $36,45,54$
3) $44,55,66$
p105 52, 65, 78, 91, 104, 117, 130, 143, 156
$\begin{array}{llll}\text { p108 } & 1) \\ 679 & \text { 2) } 480000 & 3) \\ 72\end{array}$
p109 1) 1250 2) 30 3) 6930
4) 3010 5) 2.7 6) 16480

| pll | 17 | | |
| :--- | :--- | :--- | :--- | :--- |
| 770 | 2) | 238 | $3)$ |
| 312 | $4)$ | | |

pl15 3072
$\begin{array}{llll}\text { pll7 } & 10 & 2360 & \text { 2) } 4085 \text { 3) } 8217\end{array}$ 4) 16704 5) 62487
p131 1) £9 each 2) 6 marbles each pl33 1) 12 2) 8 3) 6 4) 4 5) 3 6) 2
$\begin{array}{llll}\text { p136 } & \text { 1) } £ 182.54 & \text { 2) } 4557 \\ \text { cars }\end{array}$
p137 1) 43 leaflets 2) 45 bracelets
$\begin{array}{llll}\text { p141 } & 32 r 4 & \text { 2) } 46 r 4\end{array}$
p143 1) 31 2) $71 r 2$ 3) 97 r 2 4) 27 r 4
p145 1) 151 2) 2
p153 1) 37 2) 17 3) 65
p157 1) 1511 2) 2.69 3) -32
4) 2496 5) 17 6) 240

Measurement

```
p162 50m
```

p164 1) 87 cm 2) 110 cm
pl68 1) $16 \mathrm{~cm}^{2}$ 2) $8 \mathrm{~cm}^{2}$ 3) $8 \mathrm{~cm}^{2}$
pl70 $8 m^{2}$
pl71 3m
p175 $77 \mathrm{~m}^{2}$
p180 1) $15 \mathrm{~cm}^{3}$ 2) $20 \mathrm{~cm}^{3}$ 3) $14 \mathrm{~cm}^{3}$
p181 1000000 (1 million)
p184 7g
p185 13360 g or 13.36 kg
p187 $26^{\circ} \mathrm{C}$
p197 70 minutes
p201 £9.70

Geometry

p207 There are nine diagonals:

p209 The dotted lines show parallel lines:

p213 Shape 1 is the regular polygon.

p217 You would get a parallelogram.

p221 The diameter is 6 cm . The circumference is 18.84 cm .
p223 The shape has 8 faces, 18 edges, and 12 vertices.
p227 Shape 4 is a non-prism.
p228 The other nets of a cube are:

p237 $a=90^{\circ}, b=50^{\circ}, c$ and $e=40^{\circ}$
p239 1) 30° 2) 60°
p241 Each angle is 70°
$\begin{array}{lllll}\text { p243 1) } 60^{\circ} & \text { 2) } 34^{\circ} & \text { 3) } 38^{\circ} & \text { 4) } 55^{\circ}\end{array}$
p247 115°
p248 $A=(1,3) \quad B=(4,7)$
$C=(6,4) \quad D=(8,6)$
p251 1) (2, 0), (1, 3), ($-3,3$), ($-4,0$), $(-3,-3),(1,-3)$.
2) You would make this shape:

p253 1) Orange monorail car
2) Boat no. 2 3) C7
p255) 2W, 2N, 3W
2) One route is: $2 \mathrm{E}, 8 \mathrm{~N}, \mathrm{IE}$
3) The beach 4) Seal Island
p257 The numbers 7 and 6 have none, 3 has one, and 8 has two.
p258 No. 3 has no rotational symmetry.
p261

p265 There are five other positions the triangle could be in:

Statistics

$\begin{array}{llll}\text { p277 1) } 133 & \text { 2) } 7 & \text { 3) } 19\end{array}$
p283 One of several possible pictograms looks like this:

Leroy's gaming	
Day	Gaming time
Monday	[践 ${ }^{\text {b }}$
Tuesday	
Wednesday	[蓳\}
Thursday	
Friday	

KEY
10 minutes
p293 1) 155° 2) 20%
p299 1) 7 2) 2 and 12 3) $1 / 6$ and $1 / 36$

Algebra

```
p305 l) 32 2) 7 3) 53 4) 21
p307 1) 44, 50, 56,62,68 2) (6 < 40) +2
    =242 3) (6 * 100)+2=602
```


Acknowledgments

Dorling Kindersley would like to thank: Thomas Booth for editorial assistance; Angeles Gavira-Guerrero, Martyn Page, Lili Bryant, Andy Szudek, Rob Houston, Michael Duffy, Michelle Baxter, Clare Joyce, Alex Lloyd, and Paul Drislane for editorial and design work on early versions of this book; Kerstin Schlieker for editorial advice; and Iona Frances, Jack Whyte, and Hannah WoosnamSavage for help with testing

[^0]: 2
 Next, we work out the values of the different sections. When we add the values together, we get the answer: 982.

[^1]: Answers on page 319

[^2]: 3 The second most significant digit of 1404 is larger than it is in 1133 . So, 1404 is the larger number.

[^3]: 2
 So, the factor pairs of 12 , written in either order, are: 1 and 12,2 and 6 , and 3 and 4 .

[^4]: 2There are four numbers in the section where the circles overlap: $12,24,36$, and 48 . These are the common multiples of 3 and 4 .

 3
 The lowest common multiple of
 3 and 4 is 12 . We don't know their highest common multiple, because numbers can be infinitely large.

[^5]: When we show 4^{2} as a square, it's made of 4×4 small squares, which makes a total of 16 squares.

[^6]: Now find 7 in the left-hand column. Follow the row and column until you get to the square where they meet. This square contains the square of that number.

[^7]: The row and column meet at the square containing 49. So, the square of 7 is 49 .

[^8]: So, if we divide the numerator and the denominator by 3 , we get $5 / 7$. We have worked out that $5 / 7$ is the simplest fraction we can make from 15/21.

[^9]: Now we rewrite the fractions so they have the same denominator. The lowest common denominator of $7 / 2$ and $2 / 5$ is 10 , so we change our two fractions into tenths.

 2 goes into 10 five times, so the numerator and denominator are multiplied by 5

 4We can now subtract one numerator from the other like this: $35 / 10-4 / 10=31 / 10$. We finish by changing $31 / 10$ back into a mixed number.

 $$
 \frac{35}{10}-\frac{4}{10}=\frac{31}{10} \quad \text { so } \quad 3 \frac{1}{2}-\frac{2}{5}=3 \frac{1}{10}
 $$

[^10]: 2y_{4} is the same as 0.25
 We can change $1 / 4$ into $25 / 00$ by multiplying it by 25 . When we put the new fraction into placevalue columns, we see that $25 / 100$ is 0.25 .

[^11]: 2
 These trainers were $£ 50$ but have been reduced by 30%.

[^12]: 2
 As a decimal
 If we rewrite $3 / 5$ as equivalent tenths, we get $6 / 10$, which is the same as 0.6 . So, 0.6 of the group consists of pink roses.

[^13]: Write 0.35 as a fraction. Don't forget to simplify it.

[^14]: 6So, 4×3 and 3×4 both give us the same total.
 It doesn't matter which order you multiply numbers in, the total will be the same. This means we can say that multiplication is commutative.

[^15]: This is also true of other multiples of 10 . For example, 5 and 3 are a factor pair of 15 , because $5 \times 3=15$. So the answer to $150 \div 50$ must be 3 .

[^16]: - To convert m to km , we divide by 1000 . To convert km to m , we multiply by 1000 .

[^17]: 3So, the unknown side is 22 m long.

[^18]: 3
 So, the perimeter has stayed the same, but the area is now smaller.

[^19]: 2
 To convert the other way, from millilitres to litres, we divide 5000 ml by 1000 , to give 5 l .

[^20]: The months that sit on a knuckle are 31 days long: January, March, May, July, August, October, and December.

[^21]: 3 All the months, except February, that sit in a dip between two knuckles are 30 days long: April, June, September, and November.

[^22]: 1
 Here are all the coins we can use to make different amounts. Let's see how we can combine these coins in different ways to make a total of $£ 1.27$.

 2
 We use the least number of coins if we combine the largest coin amounts possible: $£ 1,20 p, 5$ p, and 2 p.

[^23]: Now put the string along Route 3, the river. The mark you make this time will be the furthest along the string. So, Route 3 is the longest route.

[^24]: Can you find any other diagonal lines in this picture?

[^25]: 3
 Use a ruler and pencil to draw a line between the two points, then label the angle.

[^26]: Cut a triangle out of paper. The sides and angles can be any size. Now tear off the three corners.
 1

[^27]: 5

 ## Trapezium

 Two of a trapezium's angles are greater than 90°. It has one pair of parallel sides.

[^28]: 3
 In the third quadrant, point C is behind the origin on the x axis and below it on the y axis, so both coordinates are negative numbers. The coordinates are $(-5,-1)$.

[^29]: 2
 The eight boys (shown in red) are a subset of the class. The 16 girls (green) are also a subset. Together, they form the set of the whole class.

[^30]: Music lesson

[^31]: 1
 Two football teams each scored 20 goals in five games. The mean goals scored per match for both teams is $4(20 \div 5=4)$.

